- •Глава 1. Основные химические понятия и законы. Агрегатные состояния веществ
- •1.1. Химия – наука о веществах и их превращениях
- •1.2. Атомно-молекулярное учение
- •1.3. Закон постоянства состава
- •1.4. Закон простых кратных отношений
- •1.5. Атомные и молекулярные массы
- •1.6. Количество вещества
- •1.7. Закон Авогадро
- •1.8. Закон простых объемных отношений Гей-Люссака
- •1.9. Закон эквивалентов
- •1.10. Газовые законы
- •1.11. Закон Бойля-Мариотта
- •Глава 2. Основные классы неорганических соединений
- •2.1. Классификация неорганических веществ
- •2.2. Классификация реакций в неорганической химии
- •2.3. Номенклатура, получение и химические свойства неорганических веществ
- •Глава 3. Строение атома
- •3.1. История развития учения о строении атома
- •3.2. Квантово-механическая модель строения атома
- •3.2.1. Квантовые числа
- •3.2.2. Строение многоэлектронных атомов
- •3.3. Периодический закон д.И. Менделеева
- •3.3.4.1. Атомные радиусы.
- •Глава 4. Химическая связь
- •4.1. Химичсекая связь
- •4.1. Образование и свойства химической связи
- •4.1.1. Полярность связи
- •4.1.2. Поляризуемость связи
- •4.1.3. Энергия и длина связи
- •4.1.4. Направленность ковалентной связи
- •4.1.4.1. Гибридизация атомных орбиталей
- •4.1.4.2. Образование σ-, π- и δ-связей
- •4.1.4.3. Образование кратных связей
- •4.2. Механизмы образования ковалентных связей
- •4.2.1. Обменный механизм
- •4.2.2. Донорно-акцепторный механизм
- •4.2.3. Насыщаемость – свойство ковалентной связи
- •4.3. Ионная химическая связь
- •4.4. Метод валентных связей
- •4.5. Метод молекулярных орбиталей
- •4.5.1. Связывающие и разрыхляющие орбитали
- •4.5.2. Порядок и энергия связи
- •4.5.3. Электронные конфигурации молекул
- •4.6. Металлическая связь
- •4.7. Межмолекулярное взаимодействие
- •4.7.2. Водородная связь
- •4.8. Химическая связь и строение вещества
- •4.8.1. Общая характеристика жидкого состояния.
- •4.8.2. Характеристика свойств веществ в твердом состоянии
- •Глава 5. Химическая термодинамика
- •5.1. Основные понятия и определения
- •5.2. Функции состояния
- •5.2.1. Внутренняя энергия (u)
- •5.2.2. Энтальпия (н)
- •5.2.3. Закон Гесса
- •Рассмотрим некоторые следствия из закона Гесса:
- •5.2.4. Энтропия (s)
- •5.2.5. Энергия Гиббса (g)
- •Глава 6. Химическая кинетика
- •6.1. Скорость химической реакции
- •6.2. Влияние концентрации реагирующих веществ на скорость реакции
- •6.3. Влияние температуры на скорость химической реакции
- •6.4. Влияние катализаторов на скорость химической реакции
- •6.6. Химическое равновесие
- •6.7. Принцип Ле-Шателье
- •6.8. Фазовые равновесия
- •6.9. Термический анализ
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 5 Скорость химической реакции. Катализ
- •Ход работы
- •Глава 7. Растворы. Дисперсные системы
- •7.1. Растворы как гомогенные системы
- •7.2. Вода
- •7.3. Способы выражения состава раствора
- •7.4. Растворимость веществ в воде
- •7.5. Изменение энтальпии и энтропии при растворении
- •7.6. Свойства разбавленных молекулярных растворов
- •7.6.1. Закон Рауля
- •7.6.2. Понижение температуры замерзания и повышение температуры кипения разбавленных молекулярных растворов
- •7.6.3. Осмос
- •7.7. Растворы электролитов
- •7.7.1. Степень диссоциации
- •7.7.2. Диссоциация слабых электролитов. Константа диссоциации. Закон разбавления Оствальда
- •7.7.3. Теория сильных электролитов
- •7.8. Реакции обмена в растворах электролитов
- •7.8.5. Буферные растворы
- •7.8.6. Гидролиз солей
- •7.9. Дисперсные системы. Коллоидные растворы
- •7.9.1. Общие понятия о дисперсных системах
- •7.9.2. Поверхностные явления
- •7.9.3. Самопроизвольные поверхностные процессы
- •7.9.4 Адсорбция
- •7.9.5. Строение двойного электрического слоя на границе раздела фаз. Электрические свойства коллоидных растворов
- •7.9.6. Методы получения коллоидных растворов
- •7.9.7. Очистка коллоидов. Мембраны и мембранные процессы
- •7.9.8. Устойчивость коллоидных систем. Коагуляция коллоидных растворов
- •7.9.9. Оптические свойства коллоидных растворов.
- •7.9.10. Структурно-механические свойства дисперсных систем
- •Заключение
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 6 Часть I. Сильные и слабые электролиты
- •Ход работы
- •Лабораторная работа № 6 Часть II. Дисперсные системы и коллоидные растворы
- •Ход работы
- •Ход работы
- •Ход работы
- •Глава 8. Окислительно-восстановительные реакции
- •8.1. Определение степени окисления
- •8.2. Окисление и восстановление
- •8.3. Составление уравнений окислительно-восстановительных реакций
- •8.3.1. Метод электронного баланса
- •8.3.2. Ионно-электронный метод
- •8.4. Типы окислительно−восстановительных реакций
- •8.5. Окислительно-восстановительные эквиваленты
- •Контрольные вопросы
- •Примеры решения задач
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 7 Окислительно-восстановителдьные реакции
- •Ход работы
- •Глава 9. Электрохимия
- •9.1. Возникновение скачка потенциала на границе металл-раствор электролита. Электродные потенциалы
- •9.2. Гальванический элемент Даниэля-Якоби
- •9.2.1. Измерение электродных потенциалов. Электроды сравнения
- •9.2.2. Уравнение Нернста
- •9.2.3. Окислительно-восстановительные электроды
- •9.3. Химические источники тока
- •9.4. Коррозия металлов
- •9.4.1. Химическая коррозия
- •9.4.2. Электрохимическая коррозия
- •9.4.3. Пассивность металла
- •9.4.4. Защита металлов от коррозии
- •9.5. Электролиз
- •9.5.1. Электролиз расплавов
- •9.5.2. Электролиз расторов
- •9.5.3. Законы электролиза
- •9.5.4. Поляризация и перенапряжение
- •9.5.5. Применение электролиза
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Ответы к тестовым заданиям
- •Лабораторная работа № 8 Ряд напряжений металлов и электрохимическая коррозия
- •Ход работы
- •Лабораторная работа № 9 Электролиз растворов электролитов
- •Ход работы
- •Глава 10. Общие свойства металлов
- •10.1. Положение металлов в периодической системе
- •10.2. Физические свойства металлов
- •10.3. Металлическая связь
- •10.4. Кристаллическое строение металлов
- •10.5. Получение металлов
- •10.6. Химические свойства металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Лабораторная работа № 10 Химические свойства металлов
- •Ход работы
- •Глава 11. Металлы d-семейства
- •11.1. Электронное стоение и положение в периодической системе
- •11.2. Физические свойства d-металлов
- •11.3. Химические свойства
- •11.4. Свойства соединений d-металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 11 Химические свойства соединений d-металлов
- •Ход работы
- •Глава 12. Комплексные соединения
- •12.1. Координационная теория Вернера
- •12.2. Номенклатура комплексных соединений
- •12.3. Химическая связь в комплексных соединениях
- •12.4. Комплексные соединения как электролиты
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 12 Комплексные соединения
- •Ход работы
- •Глава 13. Органические соединения
- •13.1. Теория химического строения а.М. Бутлерова
- •13.2. Классификация органических соединений
- •13.3. Основы номенклатуры органических соединений
- •13.4. Классификация реакций в органической химии
- •13.5. Химические свойства классов органических соединений
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ключи к тестовым заданиям
- •Лабораторная работа № 13 Химические свойства органических соединений некоторых классов
- •Ход работы
- •Глава 14. Полимеры
- •14.1. Природные полимеры
- •14.1.1. Натуральный каучук
- •14.1.2. Крахмал
- •14.1.3. Целлюлоза
- •14.1.4. Белки
- •14.2. Синтетические полимеры
- •14.2.1. Получение синтетических полимеров
- •14.2.2. Структура полимеров
- •14.2.3. Химические свойства полимеров
- •14.2.4. Электрические свойства полимеров
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 14 Получение синтетических полимеров
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ
- •15.1. Качественный анализ
- •15.1.1. Методы очистки и разделения веществ.
- •15.1.2. Идентификация катионов неорганических веществ
- •15.2. Количественный анализ - определение содержания компонентов в анализируемом веществе
- •15.2.1. Гравиметрический метод анализа
- •15.2.2. Титриметрический метод анализа
- •15.2.3. Оптические методы анализа
- •15.2.4. Электрохимические методы анализа
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 15 Определение общей жесткости воды
- •Ход работы
- •Заключение
- •Приложения Приложение 1 Важнейшие величины и соотношения, применяемые при решении задач
- •Приложение 2 Электроотрицательность элементов по Полингу
- •Приложение 3 Термодинамические константы некоторых веществ
- •Приложение 4 Растворимость некоторых солей и оснований в воде
- •Приложение 5 Степень диссоциации некоторых электролитов
- •Приложение 6 Константы диссоциации некоторых электролитов при 298 к
- •Приложение 7 Произведение растворимости некоторых малорастворимых электролитов при 25°с
- •Приложение 8 Стандартные электродные потенциалы ( е°) металлов при 25°с (ряд напряжений)
- •Приложение 9 Стандартные окислительно-восстановительные потенциалы некоторых систем в водных растворах при 25°с
- •Приложение 10 Коэффициенты активности f ионов при различной ионной силе раствора
- •Приложение 11 Константы нестойкости комплексных ионов при 25°с*
- •Приложение 12
- •Приложение 13 Свойства и применение некоторых полимеров
- •Список литературы
- •Содержание
- •Глава 5. Химическая термодинамика 47
- •Глава 6. Химическая кинетика 54
- •Глава 7. Растворы. Дисперсные системы 74
- •Глава 8. Окислительно-восстановительные реакции 127
- •Глава 9. Электрохимия 142
- •Глава 10. Общие свойства металлов 178
- •Глава 11. Металлы d-семейства 191
- •Глава 12. Комплексные соединения 203
- •Глава 13. Органические соединения 216
- •Глава 14. Полимеры 233
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ 249
Примеры выполнения заданий
Пример 1. Рассчитайте коэффициент полимеризации изобутилена при получении полиизобутилена с молярной массой полимера 56 280.
Дано: Мп = 56 280 |
Решение 1) Запишем уравнение получение полиизобутилена: |
α - ? |
2) Рассчитаем молекулярную массу мономера, из которого состоит полимер:
Mм(C4H6) = 56 г/моль
3) Найдем степень полимеризации изобутилена по формуле:
Ответ: α = 1005
Пример 2. Вычислить объем пропилена (при н.у.), затраченный для синтеза одной молекулы полипропилена со средней молекулярной массой 84 000? Какова степень полимеризации?
Дано: Мср = 84 000 |
Решение: 1) Вычислим молекулярную массу мономера: Мм(С3Н6) = 42 г/моль |
V(–C3H6–) - ? |
2) Рассчитаем степень полимеризации:
,
3) Найдем по соотношению объем пропилена:
.
Ответ: α = 2000, V = 44,8 м3.
Пример 3. 28,2 г фенола нагрели с избытком формальдегида в присутствии кислоты. При этом образовалось 5,116 г воды. Определите среднюю молярную массу полученного высокомолекулярного продукта реакции, считая, что поликонденсация протекает только линейно, и фенол полностью вступает в реакцию.
Дано: m(C6H5OH) = 28,2 г m(H2O) = 5,116 г |
Решение 1) Запишем уравнение линейной поликонденсации фенола и формальдегида: |
Mср - ? |
2) Найдем количество вещества фенола и воды:
3) Найдем соотношение по уравнению количества воды и фенола:
,
,
откуда х = 19.
4) Молярная масса продукта конденсации равна:
М = М(С6Н4ОН) + (x-2)·M(СН2С6Н3ОН) + M(СН2С6Н4ОН)
М = 93 + 17·106 + 107 = 2002 г/моль.
Ответ: 2002 г/моль.
Задания для самостоятельной работы
Задание 1. Напишите структурные формулы предложенных веществ и составьте схемы полимеризации мономеров (с учетом возможности существования структурных и геометрических изомеров) и приведите названия полученных полимеров:
№ вар. |
Названия веществ |
1 |
этилен, хлоропрен |
2 |
пропилен, ε-аминокапроновая кислота |
3 |
стирол, 6-аминогексановая кислота |
4 |
винилхлорид, 1,3-бутадиен |
5 |
метилметакрилат, винилбензол |
6 |
тетрафторэтилен, этилакрилат |
7 |
акрилонитрил, n-метоксистирол |
8 |
бутен-2, хлоропрен |
9 |
4-хлорбутадиен-1,3, винилхлорид |
10 |
n-метоксистирол, тетрафторэтилен |
11 |
этилакрилат, 4-хлорбутадиен-1,3, |
12 |
винилбензол, метилметакрилат |
13 |
1,3-бутадиен, стирол |
14 |
6-аминогексановая кислота, пропилен |
15 |
ε-аминокапроновая кислота, этилен |
Задание 2. Составьте структурные цепи полимеров и запишите уравнения реакций их получения с указанием названия исходных веществ:
Вариант |
Полимер |
Вариант |
Полимер |
1 |
полиамид |
2 |
полиуретан |
3 |
капролактам |
4 |
акрилонитрил |
5 |
фенолформальдегид |
6 |
капрон |
7 |
лавсан |
8 |
полистирол |
9 |
полиметилметакрилат |
10 |
капролактам |
11 |
политетрафторэтилен |
12 |
полиакрилонитрил |
13 |
поливинилхлорид |
14 |
полистирол |
15 |
полиэтилен |
|
|
Задание 3. Решите расчетную задачу:
1. Определите массу ε-аминокапроновой кислоты в процессе производства капрона, если при этом выделилось 24 кг воды.
2. Рассчитайте объем бутана и массу стирола, необходимых для производства 50 кг бутанстирольного каучука, в котором соотношение бутандиеновых и стирольных звеньев равно 1 : 1.
3. 28,2 г фенола нагрели с избытком формальдегида в присутствии кислоты. При этом образовалось 5,116 г воды. Определите среднюю молярную массу полученного высокомолекулярного продукта реакции, считая, что поликонденсация протекает только линейно и фенол полностью вступает в реакцию.
4. Рассчитайте среднюю степень полимеризации природного каучука, если средняя молекулярная масса его составляет 200 тыс. г/моль.
5. При катионной полимеризации получен полимер с α = 5000. Как изменится α при уменьшении концентрации катализатора в 2 раза?
6. Рассчитайте степень полимеризации адипиновой кислоты, если получен полимер с молекулярной массой 13600.
7. Полимер массой 2 г поместили в склянку с бензином. Через 20 мин полимер вынули из склянки и взвесили, масса стала 2,5 г. Рассчитайте степень набухания.
8. Вычислите степень полимеризации полиэтилена и полипропилена, если молекулярные массы равны 50 000.
9. При набухании 200 г каучука поглотилось 964 мл хлороформа (плотность 1,9 г/мл). Рассчитайте степень набухания каучука и состав полученного студня (в массовых долях).
10. Найдите степень полимеризации полиметилметакрилата со средней молекулярной массой 60 000.
11. При набухании образца резины массой 50 г поглотилось 15 мл бензола (плотность 0,89 г/мл). Рассчитайте степень набухания резины.
12. Степень набухания полиамидного волокна капрон в воде составляет 10-12%. Как изменится при этом масса образца полимера от первоначального значения 75 г?
13. Степень набухания полиакрилонитрильного волокна в воде составляет 2%. Как изменится при этом масса образца полимера от первоначального значения 425 г?
14. Вычислить объём пропилена (н.у.), затраченный для синтеза одной молекулы полипропилена со средней молекулярной массой 84000? Какова степень полимеризации ?
15. Вычислите степень полимеризации полипропилена, если его молекулярная масса равна 10 000.
