- •Глава 1. Основные химические понятия и законы. Агрегатные состояния веществ
- •1.1. Химия – наука о веществах и их превращениях
- •1.2. Атомно-молекулярное учение
- •1.3. Закон постоянства состава
- •1.4. Закон простых кратных отношений
- •1.5. Атомные и молекулярные массы
- •1.6. Количество вещества
- •1.7. Закон Авогадро
- •1.8. Закон простых объемных отношений Гей-Люссака
- •1.9. Закон эквивалентов
- •1.10. Газовые законы
- •1.11. Закон Бойля-Мариотта
- •Глава 2. Основные классы неорганических соединений
- •2.1. Классификация неорганических веществ
- •2.2. Классификация реакций в неорганической химии
- •2.3. Номенклатура, получение и химические свойства неорганических веществ
- •Глава 3. Строение атома
- •3.1. История развития учения о строении атома
- •3.2. Квантово-механическая модель строения атома
- •3.2.1. Квантовые числа
- •3.2.2. Строение многоэлектронных атомов
- •3.3. Периодический закон д.И. Менделеева
- •3.3.4.1. Атомные радиусы.
- •Глава 4. Химическая связь
- •4.1. Химичсекая связь
- •4.1. Образование и свойства химической связи
- •4.1.1. Полярность связи
- •4.1.2. Поляризуемость связи
- •4.1.3. Энергия и длина связи
- •4.1.4. Направленность ковалентной связи
- •4.1.4.1. Гибридизация атомных орбиталей
- •4.1.4.2. Образование σ-, π- и δ-связей
- •4.1.4.3. Образование кратных связей
- •4.2. Механизмы образования ковалентных связей
- •4.2.1. Обменный механизм
- •4.2.2. Донорно-акцепторный механизм
- •4.2.3. Насыщаемость – свойство ковалентной связи
- •4.3. Ионная химическая связь
- •4.4. Метод валентных связей
- •4.5. Метод молекулярных орбиталей
- •4.5.1. Связывающие и разрыхляющие орбитали
- •4.5.2. Порядок и энергия связи
- •4.5.3. Электронные конфигурации молекул
- •4.6. Металлическая связь
- •4.7. Межмолекулярное взаимодействие
- •4.7.2. Водородная связь
- •4.8. Химическая связь и строение вещества
- •4.8.1. Общая характеристика жидкого состояния.
- •4.8.2. Характеристика свойств веществ в твердом состоянии
- •Глава 5. Химическая термодинамика
- •5.1. Основные понятия и определения
- •5.2. Функции состояния
- •5.2.1. Внутренняя энергия (u)
- •5.2.2. Энтальпия (н)
- •5.2.3. Закон Гесса
- •Рассмотрим некоторые следствия из закона Гесса:
- •5.2.4. Энтропия (s)
- •5.2.5. Энергия Гиббса (g)
- •Глава 6. Химическая кинетика
- •6.1. Скорость химической реакции
- •6.2. Влияние концентрации реагирующих веществ на скорость реакции
- •6.3. Влияние температуры на скорость химической реакции
- •6.4. Влияние катализаторов на скорость химической реакции
- •6.6. Химическое равновесие
- •6.7. Принцип Ле-Шателье
- •6.8. Фазовые равновесия
- •6.9. Термический анализ
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 5 Скорость химической реакции. Катализ
- •Ход работы
- •Глава 7. Растворы. Дисперсные системы
- •7.1. Растворы как гомогенные системы
- •7.2. Вода
- •7.3. Способы выражения состава раствора
- •7.4. Растворимость веществ в воде
- •7.5. Изменение энтальпии и энтропии при растворении
- •7.6. Свойства разбавленных молекулярных растворов
- •7.6.1. Закон Рауля
- •7.6.2. Понижение температуры замерзания и повышение температуры кипения разбавленных молекулярных растворов
- •7.6.3. Осмос
- •7.7. Растворы электролитов
- •7.7.1. Степень диссоциации
- •7.7.2. Диссоциация слабых электролитов. Константа диссоциации. Закон разбавления Оствальда
- •7.7.3. Теория сильных электролитов
- •7.8. Реакции обмена в растворах электролитов
- •7.8.5. Буферные растворы
- •7.8.6. Гидролиз солей
- •7.9. Дисперсные системы. Коллоидные растворы
- •7.9.1. Общие понятия о дисперсных системах
- •7.9.2. Поверхностные явления
- •7.9.3. Самопроизвольные поверхностные процессы
- •7.9.4 Адсорбция
- •7.9.5. Строение двойного электрического слоя на границе раздела фаз. Электрические свойства коллоидных растворов
- •7.9.6. Методы получения коллоидных растворов
- •7.9.7. Очистка коллоидов. Мембраны и мембранные процессы
- •7.9.8. Устойчивость коллоидных систем. Коагуляция коллоидных растворов
- •7.9.9. Оптические свойства коллоидных растворов.
- •7.9.10. Структурно-механические свойства дисперсных систем
- •Заключение
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 6 Часть I. Сильные и слабые электролиты
- •Ход работы
- •Лабораторная работа № 6 Часть II. Дисперсные системы и коллоидные растворы
- •Ход работы
- •Ход работы
- •Ход работы
- •Глава 8. Окислительно-восстановительные реакции
- •8.1. Определение степени окисления
- •8.2. Окисление и восстановление
- •8.3. Составление уравнений окислительно-восстановительных реакций
- •8.3.1. Метод электронного баланса
- •8.3.2. Ионно-электронный метод
- •8.4. Типы окислительно−восстановительных реакций
- •8.5. Окислительно-восстановительные эквиваленты
- •Контрольные вопросы
- •Примеры решения задач
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 7 Окислительно-восстановителдьные реакции
- •Ход работы
- •Глава 9. Электрохимия
- •9.1. Возникновение скачка потенциала на границе металл-раствор электролита. Электродные потенциалы
- •9.2. Гальванический элемент Даниэля-Якоби
- •9.2.1. Измерение электродных потенциалов. Электроды сравнения
- •9.2.2. Уравнение Нернста
- •9.2.3. Окислительно-восстановительные электроды
- •9.3. Химические источники тока
- •9.4. Коррозия металлов
- •9.4.1. Химическая коррозия
- •9.4.2. Электрохимическая коррозия
- •9.4.3. Пассивность металла
- •9.4.4. Защита металлов от коррозии
- •9.5. Электролиз
- •9.5.1. Электролиз расплавов
- •9.5.2. Электролиз расторов
- •9.5.3. Законы электролиза
- •9.5.4. Поляризация и перенапряжение
- •9.5.5. Применение электролиза
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Ответы к тестовым заданиям
- •Лабораторная работа № 8 Ряд напряжений металлов и электрохимическая коррозия
- •Ход работы
- •Лабораторная работа № 9 Электролиз растворов электролитов
- •Ход работы
- •Глава 10. Общие свойства металлов
- •10.1. Положение металлов в периодической системе
- •10.2. Физические свойства металлов
- •10.3. Металлическая связь
- •10.4. Кристаллическое строение металлов
- •10.5. Получение металлов
- •10.6. Химические свойства металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Лабораторная работа № 10 Химические свойства металлов
- •Ход работы
- •Глава 11. Металлы d-семейства
- •11.1. Электронное стоение и положение в периодической системе
- •11.2. Физические свойства d-металлов
- •11.3. Химические свойства
- •11.4. Свойства соединений d-металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 11 Химические свойства соединений d-металлов
- •Ход работы
- •Глава 12. Комплексные соединения
- •12.1. Координационная теория Вернера
- •12.2. Номенклатура комплексных соединений
- •12.3. Химическая связь в комплексных соединениях
- •12.4. Комплексные соединения как электролиты
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 12 Комплексные соединения
- •Ход работы
- •Глава 13. Органические соединения
- •13.1. Теория химического строения а.М. Бутлерова
- •13.2. Классификация органических соединений
- •13.3. Основы номенклатуры органических соединений
- •13.4. Классификация реакций в органической химии
- •13.5. Химические свойства классов органических соединений
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ключи к тестовым заданиям
- •Лабораторная работа № 13 Химические свойства органических соединений некоторых классов
- •Ход работы
- •Глава 14. Полимеры
- •14.1. Природные полимеры
- •14.1.1. Натуральный каучук
- •14.1.2. Крахмал
- •14.1.3. Целлюлоза
- •14.1.4. Белки
- •14.2. Синтетические полимеры
- •14.2.1. Получение синтетических полимеров
- •14.2.2. Структура полимеров
- •14.2.3. Химические свойства полимеров
- •14.2.4. Электрические свойства полимеров
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 14 Получение синтетических полимеров
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ
- •15.1. Качественный анализ
- •15.1.1. Методы очистки и разделения веществ.
- •15.1.2. Идентификация катионов неорганических веществ
- •15.2. Количественный анализ - определение содержания компонентов в анализируемом веществе
- •15.2.1. Гравиметрический метод анализа
- •15.2.2. Титриметрический метод анализа
- •15.2.3. Оптические методы анализа
- •15.2.4. Электрохимические методы анализа
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 15 Определение общей жесткости воды
- •Ход работы
- •Заключение
- •Приложения Приложение 1 Важнейшие величины и соотношения, применяемые при решении задач
- •Приложение 2 Электроотрицательность элементов по Полингу
- •Приложение 3 Термодинамические константы некоторых веществ
- •Приложение 4 Растворимость некоторых солей и оснований в воде
- •Приложение 5 Степень диссоциации некоторых электролитов
- •Приложение 6 Константы диссоциации некоторых электролитов при 298 к
- •Приложение 7 Произведение растворимости некоторых малорастворимых электролитов при 25°с
- •Приложение 8 Стандартные электродные потенциалы ( е°) металлов при 25°с (ряд напряжений)
- •Приложение 9 Стандартные окислительно-восстановительные потенциалы некоторых систем в водных растворах при 25°с
- •Приложение 10 Коэффициенты активности f ионов при различной ионной силе раствора
- •Приложение 11 Константы нестойкости комплексных ионов при 25°с*
- •Приложение 12
- •Приложение 13 Свойства и применение некоторых полимеров
- •Список литературы
- •Содержание
- •Глава 5. Химическая термодинамика 47
- •Глава 6. Химическая кинетика 54
- •Глава 7. Растворы. Дисперсные системы 74
- •Глава 8. Окислительно-восстановительные реакции 127
- •Глава 9. Электрохимия 142
- •Глава 10. Общие свойства металлов 178
- •Глава 11. Металлы d-семейства 191
- •Глава 12. Комплексные соединения 203
- •Глава 13. Органические соединения 216
- •Глава 14. Полимеры 233
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ 249
12.4. Комплексные соединения как электролиты
В водных растворах, комплексные соединения полностью диссоциируют на ионы внешней и внутренней сферы, так как связь между ними ионная:
[Cu(NH3)4](OH)2 → [Cu(NH3)4]2+ + 2ОН–.
Нейтральные комплексные соединения не диссоциируют на ионы, т.е. являются неэлектролитами. Комплексный ион – слабый электролит диссоциирует на ион-комплексообразователь и лиганды.
[Cu(NH3)4]2+ Cu2+ + 4NН3
Прочность комплексного иона, характеризующаяся константой диссоциации, называется константой нестойкости:
.
Чем меньше константа нестойкости, тем прочнее комплексный ион. Поскольку процесс диссоциации комплексного иона обратим, то равновесие можно сместить вправо и вызвать разрушение комплекса, если в раствор ввести вещество, связывающее комплексообразователь или лиганды в более прочное соединение в соответствии с правилом Бертолле.
Например, комплексное соединение K2[HgBr4] будет разрушаться при добавлении в раствор иодида калия и образованием нового соединения K2[HgI4], комплексный ион, которого является более слабым электролитом:
K2[HgBr4] + 4KI = K2[HgI4] + 4KBr,
,
.
Комплексный ион может разрушаться в случае образования труднорастворимого соединения. Так, комплексный ион [Ag(NH3)2]+ разрушается при добавлении в раствор сульфида калия и образованием сульфида серебра, который имеет ПР = 5,9 · 10–52, тогда как константа нестойкости комплексного иона Kн = 6,8 · 10–8:
[Ag(NH3)2]+ +S2– → Ag2S↓ + 2NH3
Комплексные соединения могут вступать в окислительно-восстановительные реакции замещения иона-комплексообразователя:
Zn + 2K[Au(CN)2] = 2Au + K2[Zn(CN)4],
Металлический цинк замещает золото в составе комплекса, образуя при этом более прочный тетрацианоцинкат-ион.
В некоторых ОВР происходит разрушение комплекса с образованием более простых по составу продуктов реакции:
2K2[Ni(CN)4] + Br2 + 6KОН = 2Ni(OH)3↓ + 8KCN + 2KВr.
В этой реакции ион никеля окисляется бромом до степени окисления +3. В щелочной среде ион никеля образует малорастворимый гидроксид, выпадающий в осадок. Т.о. свойства комплексных соединений в растворах подчиняются правилу Бертолле.
Контрольные вопросы
1. Изложите основные положения теории Вернера.
2. Чем объясняется способность d-металлов образовывать комплексные соединения?
3. Объясните механизм образования связей между ионом-комплексообразователем и лигандами, между внешней и внутренней сферами.
4. Изложите правила номенклатуры комплексных соединений.
5. Опишите диссоциацию комплексного соединения. Дайте определение константы нестойкости комплексного иона.
6. Охарактеризуйте химические свойства комплексных соединений.
Примеры выполнения заданий
Пример 1. Укажите а) заряды комплексообразователя, лигандов и комплексного иона, б) координационное число комплексообразователя, в) названия соединений: 1) [Ni(NH3)4]SO4, 2) [Cr(NH3)5(CNS)](NO3)2, 3) H2[PtCl6], 4) K2[Hg(CN)3(CNS)], 5) [Pt(NH3)2Cl4], 6) [Fe(NO)2(CO)2].
Решение
1) [Ni(NH3)4]SO4 – сульфат тетраамминникеля (II); SO42– – анион внешней сферы (по заряду и числу ионов внешней сферы определяют заряд комплексного иона); [Ni(NH3)4]2+ – комплексный катион; NH30 – лиганд; Ni2+ – катион-комплексообразователь, его координационное число равно 4.
2) [Cr(NH3)5(CNS)](NO3)2 – нитрат тиоцианатопентаамминхрома (III); [Cr(NH3)5(CNS)]2+ – комплексный катион; NH30 и CNS– – лиганды; Cr3+ – ион-комплексообразователь, его координационное число равно 6.
3) H2[PtCl6] – гексахлороплатинат (IV) водорода; [PtCl6]2– – комплексный анион; Cl– – лиганд; Pt4+ – ион-комплексообразователь, его координационное число равно 6.
4) K2[Hg(CN)3(CNS)] – трицианотиоцианатомеркурат (II) калия (меркуратами называют анионные комплексы ртути: mercurius – латинское название ртути, принятое у алхимиков); [Hg(CN)3(CNS)]2– – комплексный анион; Hg2+ – ион-комплексообразователь, его координационное число равно 4; CN– и CNS– – лиганды.
5) [Pt(NH3)2Cl4] – тетрахлородиамминплатина (IV); комплексное соединение без внешней сферы содержит электронейтральный комплекс; Pt4+ – ион-комплексообразователь с координационным числом 6; NH30 и Cl– – лиганды.
6) [Fe(NO)2(CO)2] – дикарбонилдинитрозилжелезо (0); Fe0 – атом-комплексообразователь с координационным числом 4; лиганды – молекулы NO и CO.
Пример 2. Приведите уравнения диссоциации соединений, напишите выражение константы нестойкости комплексного иона: [Hg(NH3)4](NO3)2, K2[Hg(CNS)4].
Решение
[Hg(NH3)4](NO3)2 = [Hg(NH3)4]2+ + 2NO3– (сильный электролит).
[Hg(NH3)4]2+ Hg2+ + 4NH3
K2[Hg(CNS)4] = 2K+ + [Hg(CNS)4]2–
[Hg(CNS)4]2– Hg2+ + 4CNS–
Пример 3. Опишите характер связей и пространственное строение комплексного иона в соединении K3[CoF6].
Решение
У иона Co3+ на внешней оболочке имеются вакантные 4s-, 4p- и 4d-орбитали:
Co3+ – 3d64s04p04d0
-
3d
4s
4p
4d
Фторид-ионы
имеют неподеленные пары электронов:
.
При взаимодействии F– и Co3+ образуется комплексный ион [CoF6]3–, в котором шесть лигандов F– образуют шесть ковалентных связей по донорно-акцеторному механизму:
|
|
3d |
|
|
4s |
|
4p |
|
|
|
4d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F– |
F– |
F– |
F– |
F– |
F– |
|
|
|
Как видно, при образовании комплекса происходит sp3d2-гибридизация и соответственно полученный комплекс имеет октаэдрическую структуру.
Связи, образующиеся между внешней и внутренней сферой – ионные.
Пример 4. Составьте молекулярные и ионные уравнения возможных процессов, объясните их направленность, подпишите названия комплексных соединений:
а) Na[Ag(NO2)2] + K2S б) K2[CdCl4] + Hg(NO3)2
в) K2[HgBr4] + KCN г) [Ag(NH3)2]Cl + HNO3
д) Co(OH)3 + KCN е) K4[Fe(CN)6] + CuCl2 →
ж) [Ag(NH3)2]Cl + NaNO3
Решение
Протекание обменных реакций, в которых участвуют комплексные ионы, подчиняется общему правилу обменных процессов: они идут в сторону более полного связывания ионов. Это достигается при образовании труднорастворимых веществ с низкими значениями ПР или слабых электролитов (в частности, комплексных ионов) с низкими значениями Kдис (Kнест комплексных ионов).
а) 2Na[Ag(NO2)2] + K2S = Ag2S + 2NaNO2 + 2KNO2
динитритоаргентат (I) натрия
2[Ag (NO2)2]– +S2– = Ag2S + 4NO2–
Kнест 10–3 ПР 10–50
ПР образующегося вещества Ag2S значительно ниже Kнест исходного комплексного иона, ион-комплексообразователь связывается сульфид-ионами в осадок сульфида серебра, над которым концентрация ионов серебра меньше, чем в исходном растворе.
б) K2[CdCl4] + Hg(NO3)2 = K2[HgCl4] + Cd(NO3)2
тетрахлорокадмат тетрахлоромеркурат(II)
калия калия
[CdCl4]2– + Hg2+ = [HgCl4]2– + Cd2+
Kн 10–3 Kн 10–15
В этой реакции исходный комплексный ион разрушается, превращаясь в новый, более прочный (произошла замена комплексообразователя – катиона кадмия на катион ртути).
в) В следующей реакции исходный комплексный ион превращается в более прочный путем замены лигандов:
K2[HgBr4] + 4KCN = K2[Hg(CN)4] + 4KBr
тетрабромoмеркурат (II) тетрацианомеркурат (II)
калия калия
[HgBr4]2– + 4CN– = [Hg(CN)]2– + 4Br–
Kн 10–21 Kн 10–42
г) [Ag(NH3)2]Cl + HNO3 = NH4NO3 +AgCl
хлорид диамминсеребра (I) нитрат аммония
[Ag(NH3)2]+ + Cl- + H+ =NH4+ + AgCl
Kн 10–8 Kн 10–10, ПР 10–10
Исходный комплексный ион разрушается, т.к. его лиганды (молекулы аммиака) образуют с ионами водорода более прочный комплекс – ион аммония, а ион-комплексообразователь образует осадок хлорида серебра.
д) Co(OH)3 + 6KCN = K3[Co(CN)6] + 3KOH
гексацианокобальтат (III) калия
Co(OH)3 + 6CN– = [Co(CN)6]3– + 3OH–
ПР = 2,510–37 Kн 10–64
Реакция идет в сторону образования очень прочного комплексного иона, поэтому осадок гидроксида кобальта растворяется.
е) K4[Fe(CN)6] + 2CuCl2 = Cu2[Fe(CN)6] + 4KCl
гексацианоферрат (II) гексацианоферрат (II)
калия меди (II)
[Fe(CN)6]4- + 2Cu2+ = Cu2[Fe(CN)6]
В этой реакции комплексный ион не разрушается, он образует нерастворимое соединение с ионами меди.
ж) [Ag(NH3)2]Cl + NaNO3 [Ag(NH3)2]NO3 + NaCl
хлорид диамминсеребра нитрат диамминсеребра
[Ag(NH3)2]+ + Cl– + Na+ + NO3– [Ag(NH3)2]+ + NO3– + Na+ + Cl–
Данная реакция обратима, не идет до конца.
