Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
source-2.doc
Скачиваний:
21
Добавлен:
01.07.2025
Размер:
13 Mб
Скачать

Ответы к тестовым заданиям

№ вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

№ ответа

1

2

3

2

3

3

3

1

3

2

3

1

3

Лабораторная работа № 8 Ряд напряжений металлов и электрохимическая коррозия

Цель работы: изучение электрохимической активности металлов; рассмотрение механизма электрохимической коррозии металлов, как работы гальванического элемента; исследование влияния природы металла, среды и внешних условий на процессы коррозии; ознакомление со способами защиты от коррозии; рассмотрение некоторых процессов электролиза в растворах электролитов.

Реактивы: металлы: Zn, Pb, Cu; растворы Cu(NO3)2 (0,01 М, 1 М), Zn(NO3)2 (0,01 М), ZnCl2 (0,1 M), PbCl2 (0,1 M), CuCl2 (0,1 M); индикаторы: фенолфталеин, лакмус, универсальная индикаторная бумага, гальванопары: Zn-Fe, Al-Cu; растворы: K3[Fe(CN)6] (0,5 М), H2SO4 (2 M), HNO3 (конц.); ингибитор уротропин.

Оборудование: промывалка с дистиллированной водой, фильтровальная бумага, штатив с пробирками, выпрямитель, микрошпатель, пипетки, U-образный сосуд, газовая горелка или спиртовка и спички.

Ход работы

Опыт 1. Сравнение электрохимической активности металлов

В две пробирки налейте по 10 капель растворов солей свинца (II), меди (II). Опустите в пробирки по кусочку цинка. Отметьте измерения, наблюдаемые в пробирках, напишите уравнения реакций. Повторите опыт еще два раза, опуская свинец и медь в пробирки с растворами не содержащими их ионы. Напишите уравнения наблюдаемых реакций. Опытные данные занесите в таблицу 9.4, поставив знак «+» под ионами металлов в тех случаях, когда эти металлы вытеснялись из их солей, и знак «0», когда вытеснения не происходило.

Таблица 9.4

Способность металлов восстанавливать друг друга из растворов их солей

Металл

Ионы металла в растворе

Zn2+

Pb2+

Cu2+

Zn

Pb

Cu

В выводе охарактеризуйте восстановительную способность изученных металлов и расположите их в ряд по уменьшению этого свойства. Соответствует ли расположение металлов в этом ряду их положению в ряду электрохимической активности металлов?

Опыт 2. Контактная коррозия

На кусочке цинка закрепите канцелярскую железную скрепку, сцепите между собой железную и медную скрепки так, чтобы между металлами был тесный контакт. В пробирки внесите по 2-3 мл 2 М раствора серной кислоты. Добавьте в каждую пробирку по две капли раствора 0,5 М раствора K3[Fe(CN)6] (реактив на ион Fe2+). Что наблюдаете? Объясните процессы, происходящие в каждой пробирке.

Напишите схему медно-железного и железно-цинкового гальванических микроэлементов, схемы анодного и катодного процессов при работе гальвано-пар.

Опыт 3. Взаимодействие цинка с кислотой в присутствии ионов меди (II)

Налейте в две пробирки по 5-6 капель 2 М раствора серной кислоты. В одну из пробирок добавьте несколько капель раствора сульфата меди. В обе пробирки поместите по кусочку цинка. В какой пробирке водород выделяется более интенсивно и почему?

Опыт 4. Защита металла от коррозии химическим пассивированием

Очистите наждачной бумагой два стальных гвоздя или разогнутые канцелярские скрепки. Одну из них опустите в пробирку с концентрированным раствором азотной кислоты. Запишите наблюдения. Ополосните проволоку водой и вновь опустите в пробирку с раствором серной кислоты. Для сравнения опустите вторую необработанную проволоку в тот же раствор серной кислоты. Сравните скорость выделения водорода на проволоке.

Опишите опыт. В выводе отметьте роль оксидной пленки, образовавшейся на поверхности железа при его обработке азотной кислотой.

Опыт 5. Ингибиторы коррозии

Налейте в пробирку 1 М раствор H24 и опустить кусочек железа. Через 2-3 мин., когда установится равномерное выделение водорода, насыпьте несколько крупинок уротропина. Почему происходит уменьшение скорости выделения водорода, какую роль играет уротропин?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]