- •Глава 1. Основные химические понятия и законы. Агрегатные состояния веществ
- •1.1. Химия – наука о веществах и их превращениях
- •1.2. Атомно-молекулярное учение
- •1.3. Закон постоянства состава
- •1.4. Закон простых кратных отношений
- •1.5. Атомные и молекулярные массы
- •1.6. Количество вещества
- •1.7. Закон Авогадро
- •1.8. Закон простых объемных отношений Гей-Люссака
- •1.9. Закон эквивалентов
- •1.10. Газовые законы
- •1.11. Закон Бойля-Мариотта
- •Глава 2. Основные классы неорганических соединений
- •2.1. Классификация неорганических веществ
- •2.2. Классификация реакций в неорганической химии
- •2.3. Номенклатура, получение и химические свойства неорганических веществ
- •Глава 3. Строение атома
- •3.1. История развития учения о строении атома
- •3.2. Квантово-механическая модель строения атома
- •3.2.1. Квантовые числа
- •3.2.2. Строение многоэлектронных атомов
- •3.3. Периодический закон д.И. Менделеева
- •3.3.4.1. Атомные радиусы.
- •Глава 4. Химическая связь
- •4.1. Химичсекая связь
- •4.1. Образование и свойства химической связи
- •4.1.1. Полярность связи
- •4.1.2. Поляризуемость связи
- •4.1.3. Энергия и длина связи
- •4.1.4. Направленность ковалентной связи
- •4.1.4.1. Гибридизация атомных орбиталей
- •4.1.4.2. Образование σ-, π- и δ-связей
- •4.1.4.3. Образование кратных связей
- •4.2. Механизмы образования ковалентных связей
- •4.2.1. Обменный механизм
- •4.2.2. Донорно-акцепторный механизм
- •4.2.3. Насыщаемость – свойство ковалентной связи
- •4.3. Ионная химическая связь
- •4.4. Метод валентных связей
- •4.5. Метод молекулярных орбиталей
- •4.5.1. Связывающие и разрыхляющие орбитали
- •4.5.2. Порядок и энергия связи
- •4.5.3. Электронные конфигурации молекул
- •4.6. Металлическая связь
- •4.7. Межмолекулярное взаимодействие
- •4.7.2. Водородная связь
- •4.8. Химическая связь и строение вещества
- •4.8.1. Общая характеристика жидкого состояния.
- •4.8.2. Характеристика свойств веществ в твердом состоянии
- •Глава 5. Химическая термодинамика
- •5.1. Основные понятия и определения
- •5.2. Функции состояния
- •5.2.1. Внутренняя энергия (u)
- •5.2.2. Энтальпия (н)
- •5.2.3. Закон Гесса
- •Рассмотрим некоторые следствия из закона Гесса:
- •5.2.4. Энтропия (s)
- •5.2.5. Энергия Гиббса (g)
- •Глава 6. Химическая кинетика
- •6.1. Скорость химической реакции
- •6.2. Влияние концентрации реагирующих веществ на скорость реакции
- •6.3. Влияние температуры на скорость химической реакции
- •6.4. Влияние катализаторов на скорость химической реакции
- •6.6. Химическое равновесие
- •6.7. Принцип Ле-Шателье
- •6.8. Фазовые равновесия
- •6.9. Термический анализ
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 5 Скорость химической реакции. Катализ
- •Ход работы
- •Глава 7. Растворы. Дисперсные системы
- •7.1. Растворы как гомогенные системы
- •7.2. Вода
- •7.3. Способы выражения состава раствора
- •7.4. Растворимость веществ в воде
- •7.5. Изменение энтальпии и энтропии при растворении
- •7.6. Свойства разбавленных молекулярных растворов
- •7.6.1. Закон Рауля
- •7.6.2. Понижение температуры замерзания и повышение температуры кипения разбавленных молекулярных растворов
- •7.6.3. Осмос
- •7.7. Растворы электролитов
- •7.7.1. Степень диссоциации
- •7.7.2. Диссоциация слабых электролитов. Константа диссоциации. Закон разбавления Оствальда
- •7.7.3. Теория сильных электролитов
- •7.8. Реакции обмена в растворах электролитов
- •7.8.5. Буферные растворы
- •7.8.6. Гидролиз солей
- •7.9. Дисперсные системы. Коллоидные растворы
- •7.9.1. Общие понятия о дисперсных системах
- •7.9.2. Поверхностные явления
- •7.9.3. Самопроизвольные поверхностные процессы
- •7.9.4 Адсорбция
- •7.9.5. Строение двойного электрического слоя на границе раздела фаз. Электрические свойства коллоидных растворов
- •7.9.6. Методы получения коллоидных растворов
- •7.9.7. Очистка коллоидов. Мембраны и мембранные процессы
- •7.9.8. Устойчивость коллоидных систем. Коагуляция коллоидных растворов
- •7.9.9. Оптические свойства коллоидных растворов.
- •7.9.10. Структурно-механические свойства дисперсных систем
- •Заключение
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 6 Часть I. Сильные и слабые электролиты
- •Ход работы
- •Лабораторная работа № 6 Часть II. Дисперсные системы и коллоидные растворы
- •Ход работы
- •Ход работы
- •Ход работы
- •Глава 8. Окислительно-восстановительные реакции
- •8.1. Определение степени окисления
- •8.2. Окисление и восстановление
- •8.3. Составление уравнений окислительно-восстановительных реакций
- •8.3.1. Метод электронного баланса
- •8.3.2. Ионно-электронный метод
- •8.4. Типы окислительно−восстановительных реакций
- •8.5. Окислительно-восстановительные эквиваленты
- •Контрольные вопросы
- •Примеры решения задач
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 7 Окислительно-восстановителдьные реакции
- •Ход работы
- •Глава 9. Электрохимия
- •9.1. Возникновение скачка потенциала на границе металл-раствор электролита. Электродные потенциалы
- •9.2. Гальванический элемент Даниэля-Якоби
- •9.2.1. Измерение электродных потенциалов. Электроды сравнения
- •9.2.2. Уравнение Нернста
- •9.2.3. Окислительно-восстановительные электроды
- •9.3. Химические источники тока
- •9.4. Коррозия металлов
- •9.4.1. Химическая коррозия
- •9.4.2. Электрохимическая коррозия
- •9.4.3. Пассивность металла
- •9.4.4. Защита металлов от коррозии
- •9.5. Электролиз
- •9.5.1. Электролиз расплавов
- •9.5.2. Электролиз расторов
- •9.5.3. Законы электролиза
- •9.5.4. Поляризация и перенапряжение
- •9.5.5. Применение электролиза
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Ответы к тестовым заданиям
- •Лабораторная работа № 8 Ряд напряжений металлов и электрохимическая коррозия
- •Ход работы
- •Лабораторная работа № 9 Электролиз растворов электролитов
- •Ход работы
- •Глава 10. Общие свойства металлов
- •10.1. Положение металлов в периодической системе
- •10.2. Физические свойства металлов
- •10.3. Металлическая связь
- •10.4. Кристаллическое строение металлов
- •10.5. Получение металлов
- •10.6. Химические свойства металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Лабораторная работа № 10 Химические свойства металлов
- •Ход работы
- •Глава 11. Металлы d-семейства
- •11.1. Электронное стоение и положение в периодической системе
- •11.2. Физические свойства d-металлов
- •11.3. Химические свойства
- •11.4. Свойства соединений d-металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 11 Химические свойства соединений d-металлов
- •Ход работы
- •Глава 12. Комплексные соединения
- •12.1. Координационная теория Вернера
- •12.2. Номенклатура комплексных соединений
- •12.3. Химическая связь в комплексных соединениях
- •12.4. Комплексные соединения как электролиты
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 12 Комплексные соединения
- •Ход работы
- •Глава 13. Органические соединения
- •13.1. Теория химического строения а.М. Бутлерова
- •13.2. Классификация органических соединений
- •13.3. Основы номенклатуры органических соединений
- •13.4. Классификация реакций в органической химии
- •13.5. Химические свойства классов органических соединений
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ключи к тестовым заданиям
- •Лабораторная работа № 13 Химические свойства органических соединений некоторых классов
- •Ход работы
- •Глава 14. Полимеры
- •14.1. Природные полимеры
- •14.1.1. Натуральный каучук
- •14.1.2. Крахмал
- •14.1.3. Целлюлоза
- •14.1.4. Белки
- •14.2. Синтетические полимеры
- •14.2.1. Получение синтетических полимеров
- •14.2.2. Структура полимеров
- •14.2.3. Химические свойства полимеров
- •14.2.4. Электрические свойства полимеров
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 14 Получение синтетических полимеров
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ
- •15.1. Качественный анализ
- •15.1.1. Методы очистки и разделения веществ.
- •15.1.2. Идентификация катионов неорганических веществ
- •15.2. Количественный анализ - определение содержания компонентов в анализируемом веществе
- •15.2.1. Гравиметрический метод анализа
- •15.2.2. Титриметрический метод анализа
- •15.2.3. Оптические методы анализа
- •15.2.4. Электрохимические методы анализа
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 15 Определение общей жесткости воды
- •Ход работы
- •Заключение
- •Приложения Приложение 1 Важнейшие величины и соотношения, применяемые при решении задач
- •Приложение 2 Электроотрицательность элементов по Полингу
- •Приложение 3 Термодинамические константы некоторых веществ
- •Приложение 4 Растворимость некоторых солей и оснований в воде
- •Приложение 5 Степень диссоциации некоторых электролитов
- •Приложение 6 Константы диссоциации некоторых электролитов при 298 к
- •Приложение 7 Произведение растворимости некоторых малорастворимых электролитов при 25°с
- •Приложение 8 Стандартные электродные потенциалы ( е°) металлов при 25°с (ряд напряжений)
- •Приложение 9 Стандартные окислительно-восстановительные потенциалы некоторых систем в водных растворах при 25°с
- •Приложение 10 Коэффициенты активности f ионов при различной ионной силе раствора
- •Приложение 11 Константы нестойкости комплексных ионов при 25°с*
- •Приложение 12
- •Приложение 13 Свойства и применение некоторых полимеров
- •Список литературы
- •Содержание
- •Глава 5. Химическая термодинамика 47
- •Глава 6. Химическая кинетика 54
- •Глава 7. Растворы. Дисперсные системы 74
- •Глава 8. Окислительно-восстановительные реакции 127
- •Глава 9. Электрохимия 142
- •Глава 10. Общие свойства металлов 178
- •Глава 11. Металлы d-семейства 191
- •Глава 12. Комплексные соединения 203
- •Глава 13. Органические соединения 216
- •Глава 14. Полимеры 233
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ 249
9.4. Коррозия металлов
Разрушение металлов и сплавов под действием факторов окружающей среды называется коррозией. В свободном состоянии большинство металлов являются термодинамически неустойчивыми, хотя металл служит примером прочного материала.
Большинство металлов, кроме благородных, в природе встречаются в виде химических соединений, в которых они находятся в ионном состоянии. Восстановление металлов из их природных соединений связано с затратой энергии. В процессе коррозии металл переходит в окисленное (ионное) состояние, при этом теряет присущие ему металлические свойства. Разрушение металлов является самопроизвольным процессом и протекает с уменьшением энергии Гиббса. Коррозия наносит огромный экономический ущерб. Поэтому борьба с коррозией является актуальной задачей науки. Для ее решения изучаются причины возникновения коррозии, механизмы ее протекания, и на этой основе разрабатываются эффективные методы защиты металлов и конструкций от коррозии.
В зависимости от механизма коррозионного процесса различают химическую и электрохимическую коррозию.
9.4.1. Химическая коррозия
Химическая коррозия – гетерогенный процесс, протекающий при высоких температурах, в атмосфере агрессивных газов (газовая коррозия), или в среде жидких неэлектролитов.
Газовой коррозии подвергается металл, работающий в условиях высоких температур (металл, под действием термической обработки, арматура печей, детали двигателей внутреннего сгорания, лопатки турбин).
В результате газовой коррозии на поверхности металла образуются пленка соединений металла – оксиды, карбиды, сульфиды и т.д.
Скорость газовой коррозии зависит от свойств пленки продуктов коррозии, которые образуются на металле. Чтобы пленка хорошо защищала металл от коррозии, она должна иметь хорошее сцепление с поверхностью металла, быть тонкой и сплошной, не иметь пор, быть химически стойкой в агрессивных средах и при высоких температурах, иметь коэффициент объемного расширения близкий к коэффициенту расширения металла. Такие пленки формируются на алюминии, нержавеющих сталях и др. Для придания жаропрочности сплавам железа в их состав вводят хром, кремний, алюминий, благодаря которым на поверхности металла образуется защитная пленка. Применяется также насыщение поверхности изделия алюминием (алитирование) или хромом (термохромирование).
9.4.2. Электрохимическая коррозия
Электрохимическая коррозия – разрушение металлов в среде электролита.
Детали многих металлических конструкций работают в среде электролита: опоры мостов, водный транспорт, паровые котлы, химическая аппаратура, водопроводные трубы, кузова автомобилей. В сырую погоду, при суточных колебаниях темпертур на поверхности металлов конденсируется пленка воды, в которой растворяются газы из загрязненной атмосферы (СO2, SO2, NO2, H2S, и др.) и образуется электролит.
Поверхность металлов неоднородна. На поверхности металла имеются дефекты кристаллической решетки, примеси других металлов, включения соединений с неметаллами и интерметаллические соединения, продукты взаимодействия с окружающей средой (оксиды, гидроксиды, соли, грязь), неровности поверхности. Эти участки поверхности металла в растворе электролита будут иметь другой, отличный от основного металла потенциал. Таким образом, на поверхности металлов создается система локальных, короткозамкнутых через металл гальванических элементов. Работа этих микроскопических элементов сопровождается коррозионным разрушением металла.
В качестве примера рассмотрим модель гальвано-пары железо-медь в кислой и нейтральной средах. В гальванопаре Fe/Cu более активным является железо, стандартный потенциал которого –0,44 В, а у меди +0,34 В. В кислой среде на аноде будет проходить реакция окисления железа:
Fe0 –2ē → Fe2+.
Ионы железа – Fe2+ – будут переходить в раствор, электроны – на медь, заряжая ее отрицательно. На поверхности меди ионы Н+ из раствора восстанавливаются (водородная деполяризация):
2H+ +2ē → H2.
Суммарная окислительно-восстановительная реакция коррозии железа:
Fe0 + 2H+ → Fe2+ + H2.
В нейтральных и щелочных растворах на катодных участках поверхности металла происходит процесс восстановления растворенного в воде кислорода (кислородная деполяризация):
O2 + 2H2O +4ē → 4OH–.
Суммарная реакция коррозионного процесса:
2Fe0 + O2 + 2H2O → 2Fe2+ + 4OH–, Fe2+ + 2OH– → Fe(OH)2.
В результате коррозии образуется Fe(OH)2, который дальше окисляется атмосферным кислородом воздуха до Fe(OH)3, окончательный продукт окисления – гидратированный оксид железа (III) (ржавчина):
4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 → 4FeOOH + 4H2O.
Рис. 9.4.
Схема коррозии в кислой среде при
контакте с менее активным металлом.
Гальванические пары возникают также при контакте металла с его химическими соединениями. Например, при коррозии стали анодом является зерна железа, катодом – карбид железа Fe3C (рис. 9.5).
Рис. 9.5.
Схема образования коррозионных
гальванических микроэлементов в
углеродистой стали, находящейся во
влажном воздухе
Разность потенциалов может возникнуть вследствие различной концентрации растворенного кислорода. Раствор на поверхности металла и на участках, куда затруднен доступ кислорода, вследствие конструкционных особенностей деталей, содержит разное количество растворенного кислорода, что ведет к возникновению разности потенциалов на этих участках деталей.
В промышленных центрах атмосфера содержит загрязняющие газы: SO2, NO2, CO2, H2S и др., которые растворяясь в воде, дают кислоты, агрессивные по отношению к металлам. В кислой среде на железе будет протекать процесс коррзии с водородной деполяризацией. О влиянии состава атмосферного воздуха на скорость коррозии можно судить по следующим данным: в сельской местности скорость коррозии стали составляет 100-250, в промышленных городах 450-550 г/м2 в год.
В нейтральной среде (при достаточно чистой атмосфере) коррозия протекает с кислородной деполяризацией. Почему же скорость коррозии, прокающей с кислородной поляризацией ниже?
Для того чтобы коррозия имела место необходимо условие – электродный потенциал металла должен быть отрицательнее потенциала окислителя (деполяризатора).
Таблица 9.1
Зависимость потенциала газовых электродов от рН
pН раствора |
Е(2Н+/Н2,Pt), В |
Окисляющиеся металлы |
Е(О2/2ОН–), В |
Окисляющиеся металлы |
0 |
0,0 |
Pb |
1,23 |
Hg |
7 |
–0,414 |
Fe |
0,815 |
Аg |
14 |
–0,828 |
Щелочные и щ-зем., Zn, Al |
0,401 |
Cu |
Как следует из данных приведенных в таблице, большинство металлов могут подвергаться коррозии с кислородной деполяризацией, но процесс этот медленный, т.к. кислород малорастворим в воде, и скорость его подвода к металлу невелика. Поступающий к поверхности металла кислород практически весь сразу же восстанавливается. При этом на поверхности некоторых металлов может образоваться защитная оксидная пленка, некоторые металлы при определенных условиях могут вообще переходить в пассивное состояние.
