- •Глава 1. Основные химические понятия и законы. Агрегатные состояния веществ
- •1.1. Химия – наука о веществах и их превращениях
- •1.2. Атомно-молекулярное учение
- •1.3. Закон постоянства состава
- •1.4. Закон простых кратных отношений
- •1.5. Атомные и молекулярные массы
- •1.6. Количество вещества
- •1.7. Закон Авогадро
- •1.8. Закон простых объемных отношений Гей-Люссака
- •1.9. Закон эквивалентов
- •1.10. Газовые законы
- •1.11. Закон Бойля-Мариотта
- •Глава 2. Основные классы неорганических соединений
- •2.1. Классификация неорганических веществ
- •2.2. Классификация реакций в неорганической химии
- •2.3. Номенклатура, получение и химические свойства неорганических веществ
- •Глава 3. Строение атома
- •3.1. История развития учения о строении атома
- •3.2. Квантово-механическая модель строения атома
- •3.2.1. Квантовые числа
- •3.2.2. Строение многоэлектронных атомов
- •3.3. Периодический закон д.И. Менделеева
- •3.3.4.1. Атомные радиусы.
- •Глава 4. Химическая связь
- •4.1. Химичсекая связь
- •4.1. Образование и свойства химической связи
- •4.1.1. Полярность связи
- •4.1.2. Поляризуемость связи
- •4.1.3. Энергия и длина связи
- •4.1.4. Направленность ковалентной связи
- •4.1.4.1. Гибридизация атомных орбиталей
- •4.1.4.2. Образование σ-, π- и δ-связей
- •4.1.4.3. Образование кратных связей
- •4.2. Механизмы образования ковалентных связей
- •4.2.1. Обменный механизм
- •4.2.2. Донорно-акцепторный механизм
- •4.2.3. Насыщаемость – свойство ковалентной связи
- •4.3. Ионная химическая связь
- •4.4. Метод валентных связей
- •4.5. Метод молекулярных орбиталей
- •4.5.1. Связывающие и разрыхляющие орбитали
- •4.5.2. Порядок и энергия связи
- •4.5.3. Электронные конфигурации молекул
- •4.6. Металлическая связь
- •4.7. Межмолекулярное взаимодействие
- •4.7.2. Водородная связь
- •4.8. Химическая связь и строение вещества
- •4.8.1. Общая характеристика жидкого состояния.
- •4.8.2. Характеристика свойств веществ в твердом состоянии
- •Глава 5. Химическая термодинамика
- •5.1. Основные понятия и определения
- •5.2. Функции состояния
- •5.2.1. Внутренняя энергия (u)
- •5.2.2. Энтальпия (н)
- •5.2.3. Закон Гесса
- •Рассмотрим некоторые следствия из закона Гесса:
- •5.2.4. Энтропия (s)
- •5.2.5. Энергия Гиббса (g)
- •Глава 6. Химическая кинетика
- •6.1. Скорость химической реакции
- •6.2. Влияние концентрации реагирующих веществ на скорость реакции
- •6.3. Влияние температуры на скорость химической реакции
- •6.4. Влияние катализаторов на скорость химической реакции
- •6.6. Химическое равновесие
- •6.7. Принцип Ле-Шателье
- •6.8. Фазовые равновесия
- •6.9. Термический анализ
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 5 Скорость химической реакции. Катализ
- •Ход работы
- •Глава 7. Растворы. Дисперсные системы
- •7.1. Растворы как гомогенные системы
- •7.2. Вода
- •7.3. Способы выражения состава раствора
- •7.4. Растворимость веществ в воде
- •7.5. Изменение энтальпии и энтропии при растворении
- •7.6. Свойства разбавленных молекулярных растворов
- •7.6.1. Закон Рауля
- •7.6.2. Понижение температуры замерзания и повышение температуры кипения разбавленных молекулярных растворов
- •7.6.3. Осмос
- •7.7. Растворы электролитов
- •7.7.1. Степень диссоциации
- •7.7.2. Диссоциация слабых электролитов. Константа диссоциации. Закон разбавления Оствальда
- •7.7.3. Теория сильных электролитов
- •7.8. Реакции обмена в растворах электролитов
- •7.8.5. Буферные растворы
- •7.8.6. Гидролиз солей
- •7.9. Дисперсные системы. Коллоидные растворы
- •7.9.1. Общие понятия о дисперсных системах
- •7.9.2. Поверхностные явления
- •7.9.3. Самопроизвольные поверхностные процессы
- •7.9.4 Адсорбция
- •7.9.5. Строение двойного электрического слоя на границе раздела фаз. Электрические свойства коллоидных растворов
- •7.9.6. Методы получения коллоидных растворов
- •7.9.7. Очистка коллоидов. Мембраны и мембранные процессы
- •7.9.8. Устойчивость коллоидных систем. Коагуляция коллоидных растворов
- •7.9.9. Оптические свойства коллоидных растворов.
- •7.9.10. Структурно-механические свойства дисперсных систем
- •Заключение
- •Контрольные вопросы
- •Ответы к тестовым заданиям
- •Лабораторная работа № 6 Часть I. Сильные и слабые электролиты
- •Ход работы
- •Лабораторная работа № 6 Часть II. Дисперсные системы и коллоидные растворы
- •Ход работы
- •Ход работы
- •Ход работы
- •Глава 8. Окислительно-восстановительные реакции
- •8.1. Определение степени окисления
- •8.2. Окисление и восстановление
- •8.3. Составление уравнений окислительно-восстановительных реакций
- •8.3.1. Метод электронного баланса
- •8.3.2. Ионно-электронный метод
- •8.4. Типы окислительно−восстановительных реакций
- •8.5. Окислительно-восстановительные эквиваленты
- •Контрольные вопросы
- •Примеры решения задач
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 7 Окислительно-восстановителдьные реакции
- •Ход работы
- •Глава 9. Электрохимия
- •9.1. Возникновение скачка потенциала на границе металл-раствор электролита. Электродные потенциалы
- •9.2. Гальванический элемент Даниэля-Якоби
- •9.2.1. Измерение электродных потенциалов. Электроды сравнения
- •9.2.2. Уравнение Нернста
- •9.2.3. Окислительно-восстановительные электроды
- •9.3. Химические источники тока
- •9.4. Коррозия металлов
- •9.4.1. Химическая коррозия
- •9.4.2. Электрохимическая коррозия
- •9.4.3. Пассивность металла
- •9.4.4. Защита металлов от коррозии
- •9.5. Электролиз
- •9.5.1. Электролиз расплавов
- •9.5.2. Электролиз расторов
- •9.5.3. Законы электролиза
- •9.5.4. Поляризация и перенапряжение
- •9.5.5. Применение электролиза
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Ответы к тестовым заданиям
- •Лабораторная работа № 8 Ряд напряжений металлов и электрохимическая коррозия
- •Ход работы
- •Лабораторная работа № 9 Электролиз растворов электролитов
- •Ход работы
- •Глава 10. Общие свойства металлов
- •10.1. Положение металлов в периодической системе
- •10.2. Физические свойства металлов
- •10.3. Металлическая связь
- •10.4. Кристаллическое строение металлов
- •10.5. Получение металлов
- •10.6. Химические свойства металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Лабораторная работа № 10 Химические свойства металлов
- •Ход работы
- •Глава 11. Металлы d-семейства
- •11.1. Электронное стоение и положение в периодической системе
- •11.2. Физические свойства d-металлов
- •11.3. Химические свойства
- •11.4. Свойства соединений d-металлов
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 11 Химические свойства соединений d-металлов
- •Ход работы
- •Глава 12. Комплексные соединения
- •12.1. Координационная теория Вернера
- •12.2. Номенклатура комплексных соединений
- •12.3. Химическая связь в комплексных соединениях
- •12.4. Комплексные соединения как электролиты
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 12 Комплексные соединения
- •Ход работы
- •Глава 13. Органические соединения
- •13.1. Теория химического строения а.М. Бутлерова
- •13.2. Классификация органических соединений
- •13.3. Основы номенклатуры органических соединений
- •13.4. Классификация реакций в органической химии
- •13.5. Химические свойства классов органических соединений
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ключи к тестовым заданиям
- •Лабораторная работа № 13 Химические свойства органических соединений некоторых классов
- •Ход работы
- •Глава 14. Полимеры
- •14.1. Природные полимеры
- •14.1.1. Натуральный каучук
- •14.1.2. Крахмал
- •14.1.3. Целлюлоза
- •14.1.4. Белки
- •14.2. Синтетические полимеры
- •14.2.1. Получение синтетических полимеров
- •14.2.2. Структура полимеров
- •14.2.3. Химические свойства полимеров
- •14.2.4. Электрические свойства полимеров
- •Контрольные вопросы
- •Примеры выполнения заданий
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Лабораторная работа № 14 Получение синтетических полимеров
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ
- •15.1. Качественный анализ
- •15.1.1. Методы очистки и разделения веществ.
- •15.1.2. Идентификация катионов неорганических веществ
- •15.2. Количественный анализ - определение содержания компонентов в анализируемом веществе
- •15.2.1. Гравиметрический метод анализа
- •15.2.2. Титриметрический метод анализа
- •15.2.3. Оптические методы анализа
- •15.2.4. Электрохимические методы анализа
- •Задания для самостоятельной работы
- •Тестовые задания для самоконтроля
- •Ответы к тестовым заданиям
- •Лабораторная работа № 15 Определение общей жесткости воды
- •Ход работы
- •Заключение
- •Приложения Приложение 1 Важнейшие величины и соотношения, применяемые при решении задач
- •Приложение 2 Электроотрицательность элементов по Полингу
- •Приложение 3 Термодинамические константы некоторых веществ
- •Приложение 4 Растворимость некоторых солей и оснований в воде
- •Приложение 5 Степень диссоциации некоторых электролитов
- •Приложение 6 Константы диссоциации некоторых электролитов при 298 к
- •Приложение 7 Произведение растворимости некоторых малорастворимых электролитов при 25°с
- •Приложение 8 Стандартные электродные потенциалы ( е°) металлов при 25°с (ряд напряжений)
- •Приложение 9 Стандартные окислительно-восстановительные потенциалы некоторых систем в водных растворах при 25°с
- •Приложение 10 Коэффициенты активности f ионов при различной ионной силе раствора
- •Приложение 11 Константы нестойкости комплексных ионов при 25°с*
- •Приложение 12
- •Приложение 13 Свойства и применение некоторых полимеров
- •Список литературы
- •Содержание
- •Глава 5. Химическая термодинамика 47
- •Глава 6. Химическая кинетика 54
- •Глава 7. Растворы. Дисперсные системы 74
- •Глава 8. Окислительно-восстановительные реакции 127
- •Глава 9. Электрохимия 142
- •Глава 10. Общие свойства металлов 178
- •Глава 11. Металлы d-семейства 191
- •Глава 12. Комплексные соединения 203
- •Глава 13. Органические соединения 216
- •Глава 14. Полимеры 233
- •Глава 15. Химическая идентификация веществ. Качественный и количественный анализ 249
4.8.2. Характеристика свойств веществ в твердом состоянии
Вещество, имеющее форму и оказывающее сопротивление всякому действию, направленному на изменение формы, называется твердым. Твердые вещества, имеющие постоянную температуру плавления – кристаллические, не имеющие постоянной температуры плавления, а размягчающиеся постепенно при нагревании в некотором интервале температур с переходом в жидкость – аморфные.
Кристаллы состоят из закономерно расположенных в пространстве молекул, атомов или ионов, которые образуют пространственную кристаллическую решетку.
Атомные решетки состоят из атомов. Такие кристаллические решетки характерны для неметаллов – углерода, бора, кремния, их соединений – карбидов, нитридов, фосфидов и др. Атомные решетки очень прочны. Эти вещества обладают большой твердостью, плавятся при очень высоких температурах (у алмаза tпл = 3500°С, у карбида кремния – 3000°С), практически не растворимы ни в каких растворителях. Такие свойства обусловлены прочностью ковалентной связи, образующейся за счет перекрывания облаков неспаренных электронов атомов неметаллов.
Молекулярные решетки характерны для многих неорганических веществ с ковалентным типом связи, для всех органических веществ. Они образованы молекулами, связанными между собой межмолекулярными силами (силы Ван-дер-Ваальса, водородная связь), которые значительно слабее ковалентных. Поэтому этим веществам присущи небольшая твердость, сравнительная легкоплавкость, летучесть.
Молекулы, имеющие полярные группы, связаны несколько большими межмолекулярными силами. Температуры плавления, кипения, растворимость в полярных растворителях у таких веществ выше, кристаллические решетки прочнее.
|
|
Атомная |
Молекулярная |
|
|
|
|
Ионная |
Металлическая |
Рис. 4.15. Типы кристаллических решеток.
Ионные решетки присущи большинству солей и оксидам металлов. Они построены из ионов, между которыми действуют электростатические силы. Каждый ион окружен атмосферой противоионов, что обеспечивает устойчивость кристаллов, уменьшая силы отталкивания между одноименными ионами. По прочности они занимают промежуточное положение между атомными и молекулярными кристаллическими решетками. При обычных условиях ионные кристаллы – твердые вещества, они имеют высокие температуры плавления, но небольшую летучесть. В полярных растворителях ионные кристаллы растворяются, ионная решетка при этом сравнительно легко разрушается.
Металлические решетки характерны для металлов. Они образованы положительными ионами и атомами металла, между которыми движутся свободные электроны – электронный газ (подробнее о кристаллическом строении металлов см. тему «Металлы»).
Глава 5. Химическая термодинамика
5.1. Основные понятия и определения
Химические реакции заключаются в разрыве одних и образовании других связей, поэтому их протекание сопровождается выделением или поглощением энергии в виде тепла, света, работы расширения газов. Раздел химии, изучающий тепловые эффекты реакций называется термохимией. В основе термохимии лежат термодинамические методы. Термодинамика – наука, изучающая закономерности превращения энергии из одной формы в другую. Объектом исследования термодинамики является система.
Система – тело или группа тел, находящихся во взаимодействии, и мысленно или с помощью поверхности выделенных из окружающей среды.
По характеру обмена с окружающей средой веществом и энергиейразличают: 1) изолированную – не обменивающуюся с окружающей средой веществом и энергией; 2) закрытую – обменивающуюся только энергией; 3) открытаую – обменивающуюся с окружающей средой веществом и энергией.
Система, внутри которой нет поверхности раздела, и одинаковая по свойствам во всех своих точках, называется гомогенной. Гетерогенной системой называется система внутри которой есть поверхность раздела, (металл – раствор электролита, лед – вода, вода – водяной пар).
Состояние системы определяется термодинамическими параметрами: экстенсивные параметры (пропорциональные количеству вещества) – объем, масса, плотность, концентрация, заряд, площадь поверхности; и интенсивные параметры (аналоги сил) – температура, давление, электрический потенциал, поверхностное натяжение. Параметры состояния связаны друг с другом функциональными зависимостями.
Переход системы из одного состояния в другое называется процессом. Процессы, протекающие при постоянных значениях температуры, объема, давления называются соответственно: изотермическими, изохорными, изобарными. Процессы, при которых система не обменивается теплотой с окружающей средой, а связана со средой только работой, называются адиабатными. Коме того, различают обратимый процесс, который допускает возможность возвращение системы в первоначальное состояние без затраты энергии и протекающий бесконечно медленно. Процессы не удовлетворяющие условиям обратимости – необратимые.
Различают равновесное и неравновесное состояние системы. Равновесным состоянием называется такое, в котором при отсутствии внешних воздействий параметры системы не изменяются во времени. В термодинамике не рассматривается ход процесса, а только его результат. Результатом же в классической термодинамике всегда является равновесное состояние системы и среды.
