- •1. Цели и задачи дисциплины
- •1.1. Цели изучения дисциплины
- •1.2. Задачи изучения дисциплины
- •Рекомендуемая литература:
- •1. Основная литература
- •2. Учебно-методическая литература
- •2. Основы теории логических функций
- •2.2. Простейшие переключательные функции и соответствующие им логические элементы
- •2.2.1. Способы представления переключательных функций
- •2.2.2. Переключательная функция одной переменной
- •2.2.3. Переключательная функция двух переменных
- •3. Комбинационные цифровые устройства
- •3.1. Типы цифровых устройств
- •3.2. Шифраторы
- •3.3. Дешифраторы
- •3.3.1. Одноступенчатый дешифратор
- •3.3.2. Многоступенчатый дешифратор
- •3.4. Мультиплексоры
- •3.5. Демультиплексоры
- •Сумматоры Схемы сравнения двоичных кодов
- •Одноразрядный полусумматор
- •Одноразрядный сумматор
- •4. Последовательностные цифровые устройства
- •4.1. Триггеры
- •5. Последовательностные цифровые устройства
- •5.1. Регистры
- •5.1.1. Понятие о синтезе цифрового автомата с памятью
- •5.1.2. Сдвигающие регистры
- •5.1.3. Последовательный регистр
- •5.2. Счетчики
- •5.2.1. Суммирующий счетчик
- •5.2.2. Вычитающий счетчик
- •5.2.3. Реверсивный счетчик
- •5.2.4. Счетчик с заданным коэффициентом пересчета
- •Запоминающие устройства
- •5.3. Назначение и основные виды запоминающих устройств (зу)
- •5.3.1. Запоминающие элементы озу и пзу
- •5.3.2. Организация созу, пзу, главной памяти
- •6. Элементная база цифровых устройств
- •6.1. Логические элементы ттл–технологии
- •6.2. Логические элементы на полевых транзисторах
- •7. Устройства синхронизации и управления цифровыми имс
- •7.1. Мультивибраторы на потенциальных логических элементах
- •7.2. Одновибраторы на потенциальных логических элементах
- •7.4 Автоколебательный блокинг-генератор
- •7.5 Ждущий блокинг-генератор
6.2. Логические элементы на полевых транзисторах
Из полевых транзисторов наибольшее применение при создании логических элементов получили МДП-трзнзисторы с индуцированным каналом. Это объясняется одинаковой полярностью напряжений, требуемых для управления (Um) и питания (Uс.и) этих транзисторов, и, следовательно, простым решением задачи последовательного соединения элементов на их основе
Логические элементы на МДП-трэнзисторах обладают рядом существенных преимуществ по сравнению с элементами на биполярных транзисторах. Благодаря высокому входному сопротивлению МДП-транзисторов логические элементы на их основе обладают высокой нагрузочной способностью (n> 10– 20).
Технология получения МДП-транзистора проще, чем биполярного. К тому же в качестве пассивного элемента – резистора – здесь используют сопротивление проводящего канала МДП-транзистора. Это позволяет выполнять логические МДП-микросхемы на базе только транзисторных структур, что еще более упрощает и удешевляет их технологию по сравнению со схемами на биполярных транзисторах.
В кристалле полупроводника МДП-транзистор занимает меньше места, чем биполярный. Поэтому МДП-транзисторы позволяют создавать микросхемы с высокой степенью интеграции для решения более сложных функциональных задач.
К числу преимуществ логических микросхем на МДП-транзисторах следует отнести также возможность создания элементов с низкой (менее 1 мкВт) потребляемой мощностью. Недостатком этих микросхем является меньшее быстродействие по сравнению со схемами на биполярных транзисторах.
Логический элемент НЕ. Логический элемент НЕ – инвертор (рис. 6.12, а) – представляет собой, как известно, схему каскада с ключевым режимом работы транзистора. В интегральных микросхемах на МДП-транзисторах функцию нагрузки выполняет также МДП-транзистор. На рис. 6.10, б приведена схемы элемента НЕ на МДП-транзисторах, нашедшие наибольшее практическое применение. Транзистор ТУ в схемах является управляющим, а транзистор ТН – нагрузочным.
Рис. 6.12.
Лекция №7
7. Устройства синхронизации и управления цифровыми имс
РЕЛАКСАЦИОННЫЕ ГЕНЕРАТОРЫ
НА ПОТЕНЦИАЛЬНЫХ ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ
7.1. Мультивибраторы на потенциальных логических элементах.
7.2. Одновибраторы на потенциальных логических элементах.
7.1. Мультивибраторы на потенциальных логических элементах
Переходные процессы, определяющие частоту и период колебаний в мультивибраторах на транзисторах, операционных усилителях, логических элементах, аналогичны. Структурно они также строятся по схемам: 2 транзистора по схеме ОЭ или 2ЛЭ с отрицанием типов И-НЕ, ИЛИ-НЕ, включенных последовательно. Мультивибратор имеет два временно устойчивых состояния: один ЛЭ (микросхема) закрыт, другой – открыт и наоборот. Параметры времязадающих RC-цепей определяют частоту мультивибратора.
Мультивибраторы могут работать в следующих режимах:
– автогенераторный;
– ждущий;
– режим синхронизации (работа мультивибратора синхронизирована внешним задающим генератором).
Для построения мультивибраторов на потенциально логических элементах могут использоваться элементы ИЛИ-НЕ, И-НЕ. Для многовходовых элементов неиспользуемые входы объединяют, однако при этом возрастает входная емкость и уменьшается входное сопротивление, либо подключают их для элемента И-НЕ на +Еп, для элемента ИЛИ-НЕ на –Еп (общую шину).
Принципиальная схема мультивибратора на элементах И-НЕ приведена на рис. 7.1. Время формирования импульса и паузы определяется постоянными времени заряда конденсаторов τзар1 = C1·R1 (τзар2 = C2·R2), разряд происходит через ускоряющие диоды τраз1 = С1·rVD1 (τраз2 = С2·rVD2).
Рассмотрим цепь заряда конденсатора Cl: C1 заряжается, когда элемент DD2 находится в состоянии логической «1», при этом элемент DD1 – в состоянии логического «0». Между выходным зажимом DD2 и его общей шиной элемент можно представить электрической моделью в виде источника э.д.с. (рис. 7.2.)
Здесь R"ВЫХ – выходное сопротивление элемента в состоянии логической «1», Е" – э.д.с. источника. Для серии К155 Е" = 3,5 В, R"BЫX=100÷600 Ом.
Цепь заряда конденсатора С1: от +Еп" источника э.д.с. через выходное сопротивление элемента DD2 R"ВЫХ, конденсатор С1 и резистор R1 на «минус» питания э.д.с. Е".
Рис. 7.1. Принципиальная схема мультивибратора на ПЛЭ «И-НЕ»
Рис.7.2. Модель элемента DD2 в состоянии логической «1»
В момент переключения элемента DD2 в состояние «1», его выходное напряжение UвыхDD2 = 3,5B (для серии К155) будет приложено к входу DD1, т.к. в момент коммутации Uс1- = 0, при этом выходное напряжение элемента DD2 UвыхDD2 падает до 0 В. В мультивибраторе имеет место первое временно устойчивое состояние (DD2 в состоянии логической «1», DD1 – в «0»). По мере заряда конденсатора С1 напряжение на входе DD1 уменьшается и в определенный момент времени достигает порогового уровня Unop (Unop ≈ l,5B для серии К155), при котором DD1 переключается в состояние логической «1», что соответственно переводит элемент DD2 в состояние логического «0». При этом происходит переход схемы во второе временно устойчивое состояние. В этом состоянии конденсатор С1 разряжается, а конденсатор С2 заряжается. Для цепи разряда С1 (элемент DD2 находится в состоянии логического нуля).
Между выходным зажимом DD2 и его общей шиной его можно представить следующей электрической моделью (рис. 7.3.)
Рис. 7.3. Модель элемента DD2 в состоянии логического «0»
Здесь R'вых – выходное сопротивление элемента в состоянии логического «0», Е' – э.д.с. источника. Для серии К155 Е' = 0,2÷0,3 В, R'вых = 100 Ом.
При разряде конденсатора С1 источником э.д.с. в цепи является UC1 (UC1 = 3,5B). Цепь разряда конденсатора от +UC1 через R'вых. Разряд конденсатора происходит быстро, ввиду малой постоянной времени разряда С1 - rVD1. Схема вновь переходит в первое временно устойчивое состояние.
Расчет длительности импульса и паузы мультивибратора. Длительность импульса мультивибратора на ПЛЭ рассчитывается по формуле:
Длительность паузы мультивибратора на ПЛЭ рассчитывается по формуле:
Для симметричной схемы R1 = R2, C1 = C2 и R»R1BbIX, получим:
Для обеспечения нормальной работы мультивибратора необходимо выполнить условие U R < U пор, что накладывает ограничения на верхний уровень величины резистора R. При этом Iвх ≈ 1мА (для серии К155) значение R не должно превышать величины 1÷1,3 кОм.
