- •Раздел 1
- •Глава 1
- •Кристаллические и аморфные тела
- •Элементы кристаллографии
- •Кристаллическая решетка
- •Кристаллографические индексы
- •Анизотропия
- •Влияние типа связи на структуру и свойства кристаллов
- •Взаимодействие частиц в кристаллах
- •Молекулярные кристаллы
- •Ковалентные кристаллы
- •Металлические кристаллы
- •Ионные кристаллы
- •Фазовый состав сплавов
- •Твердые растворы
- •Промежуточные фазы
- •Системы металл — неметалл
- •Дефекты кристаллов
- •Точечные дефекты
- •Линейные дефекты
- •Поверхностные дефекты
- •Жидкие кристаллы
- •Структура неметаллических материалов
- •Строение полимеров
- •Строение стекла
- •Строение керамики
- •Глава 2 свойства материалов
- •Критерии выбора материала
- •Механические свойства материалов
- •Механические свойства, определяемые при статических нагрузках
- •Механические свойства, определяемые при динамических нагрузках
- •Механические свойства, определяемые при переменных (циклических) нагрузках
- •Физические свойства материалов
- •Глава 3
- •Самопроизвольная кристаллизация
- •Несамопроизвольная кристаллизация
- •Форма кристаллов и строение слитков
- •Получение монокристаллов
- •Аморфные металлы
- •Нанокристаллические материалы
- •Глава 4
- •Методы построения диаграмм состояния
- •Основные равновесные диаграммы состояния двойных сплавов
- •Диаграмма состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют эвтектику
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют перитектику
- •Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •Физические и механические свойства сплавов в равновесном состоянии
- •Диаграмма состояния железоуглеродистых сплавов
- •Компоненты и фазы в сплавах железа с углеродом
- •Превращения в сплавах системы железо — цементит
- •Превращения в сплавах системы железо — графит
- •Влияние легирующих элементов на равновесную структуру сталей
- •Легирование и фазовые превращения
- •Карбиды и нитриды в легированных сталях
- •Влияние легирующих элементов на фазовые превращения сталей
- •Диаграмма состояния тройной системы
- •Глава 5 формирование структуры деформированных металлов и сплавов
- •Пластическое деформирование моно- и поликристаллов
- •Механизм пластического деформирования
- •Особенности деформирования монокристаллов
- •Деформирование поликристаллов
- •Деформирование двухфазных сплавов
- •Свойства холоднодеформированных металлов
- •Возврат и рекристаллизация
- •Раздел 2
- •Глава 6
- •Виды термической обработки
- •Диффузия в металлах и сплавах
- •Вывод первого уравнения Фика на основе атомной теории диффузии
- •Вывод уравнений Фика на основе термодинамической теории диффузии
- •Зависимость коэффициента диффузии от температуры
- •Диффузия в металлах и полимерах
- •Термическая обработка сплавов, не связанная с фазовыми превращениями в твердом состоянии
- •Нагрев для снятия остаточных напряжений
- •Рекристаллизационный отжиг
- •Диффузионный отжиг (гомогенизация)
- •Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии
- •Термическая обработка сталей
- •Превращения в сталях при нагреве до аустенитного состояния
- •Превращения аустенита при различных степенях переохлаждения
- •Основные виды термической обработки стали
- •Отжиг сталей
- •Нормализация сталей
- •Особенности закалки сталей
- •Закаливаемость и прокаливаемость сталей
- •Отпуск закаленных сталей
- •Оборудование для термической обработки
- •Глава 7
- •Общие закономерности
- •Диффузионное насыщение стальных деталей углеродом и азотом
- •Цементация стали
- •Насыщение поверхности стали одновременно углеродом и азотом
- •Ионная химико-термическая обработка сплавов
- •Диффузионное насыщение деталей металлами и неметаллами. Циркуляционный метод химико-термической обработки
- •Перспективы развития химико-термической обработки
- •Раздел 3
- •Глава 8
- •Общие требования, предъявляемые к конструкционным материалам
- •Конструкционная прочность материалов и критерии ее оценки
- •Методы повышения конструкционной прочности
- •Классификация конструкционных материалов
- •Глава 9
- •Классификация конструкционных сталей
- •Влияние углерода и постоянных примесей на свойства сталей
- •Углеродистые стали
- •Углеродистые стали обыкновенного качества
- •Углеродистые качественные стали
- •Легированные стали
- •Маркировка легированных сталей
- •Легированные машиностроительные стали Назначение легирования
- •Глава 10 материалы с особыми технологическими свойствами
- •Стали с улучшенной обрабатываемостью резанием
- •Железоуглеродистые сплавы с высокими литейными свойствами
- •Разновидности чугунов
- •Серые чугуны
- •Высокопрочные чугуны
- •Чугуны с вермикулярным графитом
- •Ковкие чугуны
- •Медь и ее сплавы
- •Свойства меди
- •Общая характеристика и классификация медных сплавов
- •Бронзы Оловянные бронзы
- •Глава 11 износостойкие материалы
- •Характеристики износа и виды изнашивания
- •Закономерности изнашивания деталей, образующих пары трения, и пути уменьшения их износа
- •Материалы с высокой твердостью поверхности
- •Материалы, устойчивые к абразивному изнашиванию
- •Материалы, устойчивые к
- •Материалы, устойчивые к изнашиванию в условиях больших давлений и ударных нагрузок
- •Антифрикционные материалы
- •Фрикционные материалы
- •Глава 12
- •Основные требования к пружинным материалам
- •Рессорно-пружинные стали
- •Материалы для упругих элементов приборостроения
- •Глава 13 материалы с малой плотностью
- •Особенности материалов с малой плотностью
- •Алюминий и его сплавы
- •Свойства алюминия
- •Общая характеристика алюминиевых сплавов
- •Деформируемые алюминиевые сплавы
- •Литейные алюминиевые сплавы
- •Гранулированные сплавы
- •Сплавы на основе магния
- •Свойства магния
- •Общая характеристика магниевых сплавов
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Неметаллические материалы
- •Пластмассы Общая характеристика
- •Глава 14 материалы с высокой удельной прочностью
- •Титан и сплавы на его основе
- •Свойства титана и его сплавов
- •Влияние легирующих элементов на структуру и свойства титановых сплавов
- •Особенности термической обработки титановых сплавов
- •Легирующий элемент, %
- •Промышленные титановые сплавы
- •Бериллий и сплавы на его основе
- •Свойства бериллия
- •Бериллиевые сплавы
- •Композиционные материалы
- •Общая характеристика
- •Дисперсно-упрочненные композиционные материалы
- •Волокнистые композиционные материалы Структура и свойства
- •Композиционные материалы на неметаллической основе
- •Композиционные материалы на металлической основе
- •Гибридные композиционные материалы
- •Глава 15 материалы, устойчивые к воздействию температуры и рабочей среды
- •Коррозионно-стойкие материалы
- •Электрохимическая коррозия металлов
- •Коррозионно-стойкие непассивирующиеся металлы
- •Коррозионно-стойкие пассивирующиеся металлы
- •Коррозионно-стойкие стали
- •Коррозионно-стойкие покрытия
- •Жаростойкие материалы
- •Химическая коррозия металлов
- •Жаростойкость металлов
- •Жаростойкость сплавов
- •Жаропрочные материалы
- •Критерии жаропрочности материалов
- •I неустановившаяся стадия; II - установившаяся стадия; III - стадия разрушения
- •Основные группы жаропрочных материалов
- •Хладостойкие материалы
- •Критерии хладостойкости материалов
- •Основные группы хладостойких материалов
- •Радиационно стойкие материалы
- •Влияние облучения на структуру и механические свойства
- •Влияние облучения на коррозионную стойкость
- •Раздел 4
- •Глава 16 материалы с особыми магнитными свойствами
- •Общие сведения о ферромагнетиках
- •Магнитомягкие материалы
- •Низкочастотные магнитомягкие материалы
- •41 После отжига в поперечном магнитном поле. *2То же в продольном магнитном поле. *3То же без наложения магнитного поля.
- •Высокочастотные магнитомягкие материалы Общая характеристика ферритов
- •Материалы со специальными магнитными свойствами
- •Магнитотвердые материалы
- •Основные требования к магнитотвердым материалам
- •Магнитотвердые литые материалы
- •Порошковые магнитотвердые материалы
- •Деформируемые магнитотвердые сплавы
- •Глава 17
- •Сплавы с заданным температурным коэффициентом линейного расширения
- •Сплавы с заданным температурным коэффициентом модуля упругости
- •Глава 18
- •Материалы с высокой электрической проводимостью
- •Строение и свойства проводниковых материалов
- •Промышленные проводниковые материалы
- •Полупроводниковые материалы
- •Строение и свойства полупроводниковых материалов
- •Методы получения сверхчистых материалов
- •- Затравка; 3 - монокристалл; 4 - расплав полупроводника
- •Раздел 5
- •Глава 19
- •Материалы для режущих инструментов
- •Углеродистые стали
- •Низколегированные стали
- •Быстрорежущие стали
- •Порошковые твердые сплавы
- •Сверхтвердые материалы
- •Стали для измерительных инструментов
- •Глава 20 стали для инструментов обработки металлов давлением
- •Стали для инструментов холодной обработки давлением
- •Стали для инструментов горячей обработки давлением
- •Предметный указатель
- •Х 326 арактеристика износа и виды изнашивания
- •Московское машиностроительное производственное предприятие “Салют”
- •5 Пери (греч.) — вокруг
- •8 Особенности термической обработки некоторых магнитных сплавов будут рассмотрены в гл. 16.
Дисперсно-упрочненные композиционные материалы
Структура и свойства
В дисперсно-упрочненных КМ наполнителями служат дисперсные частицы тугоплавких фаз-оксидов, нитридов, боридов, карбидов (А^Оз, 8Ю2, В1\', 81С и др.). К достоинствам тугоплавких соединений относятся высокие значения модуля упругости, низкая плотность, пассивность к взаимодействию с материалами матриц, а таких, как оксиды алюминия и кремния, большая распространенность в природе и невысокая стоимость образующих их элементов.
Дисперсно-упрочненные КМ в основном получают порошковой технологией, но существуют и другие способы, например метод непосредственного введения наполнителей в жидкий металл или сплав перед разливкой. В последнем случае для очистки от жировых и других загрязнений, улучшения смачиваемости частиц жидким металлом и равномерного распределения их в матрице применяют ультразвуковую обработку жидкого р йсплсШа,.
В дисперсно-упрочненных КМ основную нагрузку воспринимает матрица, а дисперсные частицы упрочнителя оказывают сопротивление движению дислокаций при нагружении материала, мешают развитию пластической деформации. Чем больше это сопротивление, тем выше прочность. Поэтому прочность зависит также от дислокационной структуры, формирующейся в процессе пластической деформации при изготовлении изделий из КМ. Кроме того, дисперсные частицы наполнителя оказывают «косвенное» упрочняющее действие, способствующее образованию структуры с большой степенью неравноосности зерен (волокнистой). Такая структура формируется при сочетании пластической деформации и отжигов. При этом дисперсные включения частично или полностью препятствуют рекристаллизационным процессам.
Уровень прочности зависит от объемного содержания упрочняющей фазы, равномерности ее распределения, степени дисперсности и расстояния между частицами. Согласно формуле Орована, сопротивление сдвигу увеличивается с уменьшением расстояния между частицами:
а = СЬ/1,
где С — модуль сдвига; 6 — межатомное расстояние; I — расстояние между частицами.
Большое упрочнение достигается при размере частиц 0,01 - 0,1 мкм и расстоянии между ними 0,05 - 0,5 мкм. Объемное содержание частиц зависит от схемы армирования.
Преимущество дисперсно-упрочненных КМ по сравнению с волокнистыми — изотропность свойств. К дисперсно-упрочненным КМ на алюминиевой основе, нашедшим промышленное применение, относится материал из спеченной алюминиевой пудры (САП); на никелевой основе известны композиции, упрочненные частицами оксидов тория, иттрия, гафния и др.
Дисперсно-упрочненные КМ на алюминиевой основе
Материал САП характеризуется высокой прочностью, жаропрочностью, коррозионной стойкостью и термической стабильностью свойств.
САП состоит из алюминия и его оксида. Получают САП путем последовательного брикетирования, спекания и прессования окисленной с поверхности алюминиевой пудры.
Исходным материалом при получении пудры служит порошок — пульверизат, который изготовляют распылением расплавленного алюминия А6 (ГОСТ 11069-74). Порошок размельчают в шаровых мельницах в атмосфере азота с добавлением 2 - 3 % О2 и 0,25 - 1,2 % стеариновой
кислоты. Кислород используют для окисления вновь образованных поверхностей пудры, стеарин — для облегчения скольжения и препятствия свариванию частиц пудры. Частицы пудры имеют форму чешуек толщиной менее 1 мкм. Длина и ширина частиц одного порядка, толщина оксидной пленки составляет 0,01 - 0,1 мкм. Размер частиц зависит от длительности размола: чем продолжительнее время размола, тем мельче частицы пудры, больше их общая поверхность и, следовательно, выше содержание оксида алюминия. Например, пудра марки АПС-1 с размером частиц 30 - 50 мкм содержит 6 - 8 % А12О3, а пудра АПС-2, имеющая размер частиц 10 - 15 мкм, уже 9 - 12 % А12О3. В настоящее время освоена технология получения алюминиевой пудры четырех марок и соответствующих им марок САП (табл. 14.4).
Материал |
Содержание А1203) % |
°В» МПа |
о'в/{уд), КМ |
°0,2, МПа |
6,% |
Е, ГПа |
Я/Ы-Ю-3, КМ |
САП-1 |
6-8 |
300 |
11 |
220 |
7 |
67 |
2,1 |
САП-2 |
9-12 |
350 |
13 |
280 |
5 |
71 |
2,6 |
САП-3 |
13-17 |
400 |
15 |
320 |
3 |
76 |
2,8 |
САП-4 |
18-22 |
450 |
17 |
370 |
1,5 |
80 |
2,9 |
Таблица
Ц-4-
Механические свойства САП
С
140
120
100
80
60
40
20
Зависимость механиче- САП от содержания
труктура
САП представляет собой алюминиевую
основу с равномерно распределенными
дисперсными включениями А12О3.
С увеличением содержания А12О3
повышаются прочность, твердость,
жаропрочность САП, уменьшается
пластичность (рис. 14.22). Высокая
прочность САП объясняется большой
дисперсностью оксидной фазы, малым
расстоянием между ее частицами.
Нерастворимость в алюминии и отсутствие склонности к коагуляции тонкодисперсных
частиц А12О3 обеспечивает стабильность структуры и вы- Рис 14 22
сокую прочность при темпера- ских свойств
турах до 500 °С. АЬОэ
САП хорошо деформируется в горячем состоянии, хуже — в холодном, легко обрабатывается резанием и удовлетворительно сваривается контактной, аргонодуговой сваркой. В настоящее время в основном применяют САП-1, САП-2 и САП-3, из них производят все виды полуфабрикатов: листы, профили, штамповые заготовки, трубы, фольгу. САП используют для деталей, работающих при 300 — 500 °С, от которых требуются высокая удельная прочность и коррозионная стойкость (поршневые штоки, лопатки компрессоров, лопасти вентиляторов и турбин в химической и нефтяной промышленности, конденсаторы, обмотки трансформаторов в электротехнике).
Спеченные алюминиевые сплавы (САС) изготовляют в основном по той же технологии, что и САП — из порошков, полученных распылением сплавов заданных составов.
Практическое значение имеют сплавы с низким температурным коэффициентом линейного расширения, близким к коэффициенту линейного расширения стали, и высоким модулем упругости. Так, САС, содержащий 25 - 30 % 81, 5 - 7 % №, остальное А1, имеет а — (14,5 ... 15,5) • 10~6 К-1; Е = 100 ГПа. Эти сплавы заменяют более тяжелые стали при изготовлении отдельных деталей приборов. Механические свойства САС характеризуются достаточно высокой прочностью, твердостью (<тв = 260 МПа, 120 НВ) и низкой пластичностью (6 = 1,5... 1%). Преимущества спекаемых алюминиевых сплавов по сравнению с обычными аналогичного состава — отсутствие литейных дефектов (ликвации, шлаковых включений и т.д.) и мелкозернистая структура с равномерным распределением фаз.
Высокими механическими свойствами при комнатной и повышенной температурах обладают КМ на основе алюминия и его сплавов, упрочненные частицами карбида алюминия АЦС3. Их получают методом механического легирования углеродом порошка алюминия с последующим компактированием, прессованием и прокаткой. В процессе нагрева алюминий образует с углеродом карбид А14С3. КМ А1 - АЦС3 имеет <тв = 450 ... 500 МПа, ао>2 = 430 ... 470 МПа, 6 = 4%. По длительной прочности (0-^00 = 60 МПа) он превосходит все стандартные алюминиевые сплавы (см. § 3.1).
К перспективным относятся КМ с малой плотностью на основе бериллия и магния: Ве - ВеО, Ве - Вег С и М§ - М§0. Однако они не нашли большого применения из-за технологических сложностей и низкой коррозионной стойкости.
В качестве матриц жаропрочных КМ используют никель, кобальт и их сплавы. Однако КМ с кобальтовой матрицей, обладая незначительным преимуществом перед никелевыми КМ в жаропрочности, нашли ограниченное применение из-за более высокой стоимости.
Дисперсно-упрочненные КМ на никелевой основе
В качестве матрицы в этих материалах используют никель и его сплавы с хромом (~ 20 %) со структурой твердых растворов. Сплавы с хромоникелевой матрицей обладают более высокой жаростойкостью. Упрочни- телями служат частицы оксидов тория, гафния и др. Временное сопротивление в зависимости от объемного содержания упрочняющей фазы изменяется по кривой с максимумом. Наибольшее упрочнение достигается при 3,5 - 4 % НГОг (егв = 750 ... 850 МПа; 043/(75) = 9 ... 10 км; 6 = 8 ... 12 %). Легирование никелевой матрицы \У, Т1, А1, обладающими переменной растворимостью в никеле, дополнительно упрочняет материалы в результате дисперсионного твердения матрицы, происходящего в процессе охлаждения с температур спекания. Методы получения этих материалов довольно сложны. Они сводятся к смешиванию порошков металлического хрома и легирующих элементов с заранее приготовленным (методом химического осаждения) порошком никеля, содержащим дисперсный оксид гафния или другого элемента. После холодного прессования смеси порошков проводят горячую экструзию брикетов.
