- •Раздел 1
- •Глава 1
- •Кристаллические и аморфные тела
- •Элементы кристаллографии
- •Кристаллическая решетка
- •Кристаллографические индексы
- •Анизотропия
- •Влияние типа связи на структуру и свойства кристаллов
- •Взаимодействие частиц в кристаллах
- •Молекулярные кристаллы
- •Ковалентные кристаллы
- •Металлические кристаллы
- •Ионные кристаллы
- •Фазовый состав сплавов
- •Твердые растворы
- •Промежуточные фазы
- •Системы металл — неметалл
- •Дефекты кристаллов
- •Точечные дефекты
- •Линейные дефекты
- •Поверхностные дефекты
- •Жидкие кристаллы
- •Структура неметаллических материалов
- •Строение полимеров
- •Строение стекла
- •Строение керамики
- •Глава 2 свойства материалов
- •Критерии выбора материала
- •Механические свойства материалов
- •Механические свойства, определяемые при статических нагрузках
- •Механические свойства, определяемые при динамических нагрузках
- •Механические свойства, определяемые при переменных (циклических) нагрузках
- •Физические свойства материалов
- •Глава 3
- •Самопроизвольная кристаллизация
- •Несамопроизвольная кристаллизация
- •Форма кристаллов и строение слитков
- •Получение монокристаллов
- •Аморфные металлы
- •Нанокристаллические материалы
- •Глава 4
- •Методы построения диаграмм состояния
- •Основные равновесные диаграммы состояния двойных сплавов
- •Диаграмма состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют эвтектику
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют перитектику
- •Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •Физические и механические свойства сплавов в равновесном состоянии
- •Диаграмма состояния железоуглеродистых сплавов
- •Компоненты и фазы в сплавах железа с углеродом
- •Превращения в сплавах системы железо — цементит
- •Превращения в сплавах системы железо — графит
- •Влияние легирующих элементов на равновесную структуру сталей
- •Легирование и фазовые превращения
- •Карбиды и нитриды в легированных сталях
- •Влияние легирующих элементов на фазовые превращения сталей
- •Диаграмма состояния тройной системы
- •Глава 5 формирование структуры деформированных металлов и сплавов
- •Пластическое деформирование моно- и поликристаллов
- •Механизм пластического деформирования
- •Особенности деформирования монокристаллов
- •Деформирование поликристаллов
- •Деформирование двухфазных сплавов
- •Свойства холоднодеформированных металлов
- •Возврат и рекристаллизация
- •Раздел 2
- •Глава 6
- •Виды термической обработки
- •Диффузия в металлах и сплавах
- •Вывод первого уравнения Фика на основе атомной теории диффузии
- •Вывод уравнений Фика на основе термодинамической теории диффузии
- •Зависимость коэффициента диффузии от температуры
- •Диффузия в металлах и полимерах
- •Термическая обработка сплавов, не связанная с фазовыми превращениями в твердом состоянии
- •Нагрев для снятия остаточных напряжений
- •Рекристаллизационный отжиг
- •Диффузионный отжиг (гомогенизация)
- •Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии
- •Термическая обработка сталей
- •Превращения в сталях при нагреве до аустенитного состояния
- •Превращения аустенита при различных степенях переохлаждения
- •Основные виды термической обработки стали
- •Отжиг сталей
- •Нормализация сталей
- •Особенности закалки сталей
- •Закаливаемость и прокаливаемость сталей
- •Отпуск закаленных сталей
- •Оборудование для термической обработки
- •Глава 7
- •Общие закономерности
- •Диффузионное насыщение стальных деталей углеродом и азотом
- •Цементация стали
- •Насыщение поверхности стали одновременно углеродом и азотом
- •Ионная химико-термическая обработка сплавов
- •Диффузионное насыщение деталей металлами и неметаллами. Циркуляционный метод химико-термической обработки
- •Перспективы развития химико-термической обработки
- •Раздел 3
- •Глава 8
- •Общие требования, предъявляемые к конструкционным материалам
- •Конструкционная прочность материалов и критерии ее оценки
- •Методы повышения конструкционной прочности
- •Классификация конструкционных материалов
- •Глава 9
- •Классификация конструкционных сталей
- •Влияние углерода и постоянных примесей на свойства сталей
- •Углеродистые стали
- •Углеродистые стали обыкновенного качества
- •Углеродистые качественные стали
- •Легированные стали
- •Маркировка легированных сталей
- •Легированные машиностроительные стали Назначение легирования
- •Глава 10 материалы с особыми технологическими свойствами
- •Стали с улучшенной обрабатываемостью резанием
- •Железоуглеродистые сплавы с высокими литейными свойствами
- •Разновидности чугунов
- •Серые чугуны
- •Высокопрочные чугуны
- •Чугуны с вермикулярным графитом
- •Ковкие чугуны
- •Медь и ее сплавы
- •Свойства меди
- •Общая характеристика и классификация медных сплавов
- •Бронзы Оловянные бронзы
- •Глава 11 износостойкие материалы
- •Характеристики износа и виды изнашивания
- •Закономерности изнашивания деталей, образующих пары трения, и пути уменьшения их износа
- •Материалы с высокой твердостью поверхности
- •Материалы, устойчивые к абразивному изнашиванию
- •Материалы, устойчивые к
- •Материалы, устойчивые к изнашиванию в условиях больших давлений и ударных нагрузок
- •Антифрикционные материалы
- •Фрикционные материалы
- •Глава 12
- •Основные требования к пружинным материалам
- •Рессорно-пружинные стали
- •Материалы для упругих элементов приборостроения
- •Глава 13 материалы с малой плотностью
- •Особенности материалов с малой плотностью
- •Алюминий и его сплавы
- •Свойства алюминия
- •Общая характеристика алюминиевых сплавов
- •Деформируемые алюминиевые сплавы
- •Литейные алюминиевые сплавы
- •Гранулированные сплавы
- •Сплавы на основе магния
- •Свойства магния
- •Общая характеристика магниевых сплавов
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Неметаллические материалы
- •Пластмассы Общая характеристика
- •Глава 14 материалы с высокой удельной прочностью
- •Титан и сплавы на его основе
- •Свойства титана и его сплавов
- •Влияние легирующих элементов на структуру и свойства титановых сплавов
- •Особенности термической обработки титановых сплавов
- •Легирующий элемент, %
- •Промышленные титановые сплавы
- •Бериллий и сплавы на его основе
- •Свойства бериллия
- •Бериллиевые сплавы
- •Композиционные материалы
- •Общая характеристика
- •Дисперсно-упрочненные композиционные материалы
- •Волокнистые композиционные материалы Структура и свойства
- •Композиционные материалы на неметаллической основе
- •Композиционные материалы на металлической основе
- •Гибридные композиционные материалы
- •Глава 15 материалы, устойчивые к воздействию температуры и рабочей среды
- •Коррозионно-стойкие материалы
- •Электрохимическая коррозия металлов
- •Коррозионно-стойкие непассивирующиеся металлы
- •Коррозионно-стойкие пассивирующиеся металлы
- •Коррозионно-стойкие стали
- •Коррозионно-стойкие покрытия
- •Жаростойкие материалы
- •Химическая коррозия металлов
- •Жаростойкость металлов
- •Жаростойкость сплавов
- •Жаропрочные материалы
- •Критерии жаропрочности материалов
- •I неустановившаяся стадия; II - установившаяся стадия; III - стадия разрушения
- •Основные группы жаропрочных материалов
- •Хладостойкие материалы
- •Критерии хладостойкости материалов
- •Основные группы хладостойких материалов
- •Радиационно стойкие материалы
- •Влияние облучения на структуру и механические свойства
- •Влияние облучения на коррозионную стойкость
- •Раздел 4
- •Глава 16 материалы с особыми магнитными свойствами
- •Общие сведения о ферромагнетиках
- •Магнитомягкие материалы
- •Низкочастотные магнитомягкие материалы
- •41 После отжига в поперечном магнитном поле. *2То же в продольном магнитном поле. *3То же без наложения магнитного поля.
- •Высокочастотные магнитомягкие материалы Общая характеристика ферритов
- •Материалы со специальными магнитными свойствами
- •Магнитотвердые материалы
- •Основные требования к магнитотвердым материалам
- •Магнитотвердые литые материалы
- •Порошковые магнитотвердые материалы
- •Деформируемые магнитотвердые сплавы
- •Глава 17
- •Сплавы с заданным температурным коэффициентом линейного расширения
- •Сплавы с заданным температурным коэффициентом модуля упругости
- •Глава 18
- •Материалы с высокой электрической проводимостью
- •Строение и свойства проводниковых материалов
- •Промышленные проводниковые материалы
- •Полупроводниковые материалы
- •Строение и свойства полупроводниковых материалов
- •Методы получения сверхчистых материалов
- •- Затравка; 3 - монокристалл; 4 - расплав полупроводника
- •Раздел 5
- •Глава 19
- •Материалы для режущих инструментов
- •Углеродистые стали
- •Низколегированные стали
- •Быстрорежущие стали
- •Порошковые твердые сплавы
- •Сверхтвердые материалы
- •Стали для измерительных инструментов
- •Глава 20 стали для инструментов обработки металлов давлением
- •Стали для инструментов холодной обработки давлением
- •Стали для инструментов горячей обработки давлением
- •Предметный указатель
- •Х 326 арактеристика износа и виды изнашивания
- •Московское машиностроительное производственное предприятие “Салют”
- •5 Пери (греч.) — вокруг
- •8 Особенности термической обработки некоторых магнитных сплавов будут рассмотрены в гл. 16.
Издательство
МГТУ имени Н.Э. Баумана
ыо
ИЗ V
УДК 621.002.3(075.8) ББК 34.651 М34
Рецензенты: д-р тпехп. наук, проф. М.Г. Карпмап; кафедра материаловедения и технологии обработки материалов « МАТИ» Российского государственного технологического университета им. К.Э. Циолковского
Авторы: Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин, Н.М. Рыжов,
В.И. Силаева
М34 Материаловедение: Учебник для вузов / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др.; Под общ. ред. Б.Н. Арзамасова, Г.Г. Мухина. - 8-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. - 648 с.: ил.
15ЕШ 978 5-7038 1860-2
В восьмом, стереотипном издании учебника (7-е изд. в 2005 г.), изложены закономерности формирования структуры материалов при затвердевании, пластическом деформировании и термической обработке; показана взаимосвязь комплекса физико-механических свойств материалов со структурой; обосновано обеспечение прочности, надежности и долговечности деталей благодаря рациональному выбору материалов с учетом условий эксплуатации. С позиций эксплуатационных требований рассмотрены особенности свойств, обработки и применения металлических и неметаллических материалов современных приборов и машин.
Содержание учебника соответствует программе и курсу лекций, которые авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов высших технических учебных заведений машино- и прибо- ростроительных специальностей.
У
ДК
621.002.3(075.8) ББК 34.651
[
Библиотека
1 ИТМО
151Ш 978-5-7038 1860-2
© Коллектив авторов, 2001 © Издательство МГТУ им. Н.Э. Баумана, 2001
ПРЕДИСЛОВИЕ
Восьмое, стереотипное (7-е изд. в 2005 г.) издание учебника « Материаловедение», соответствует учебным программам курса «Материаловедение», который авторы на протяжении многих лет читают в Московском государственном техническом университете им. Н.Э. Баумана.
Издание учебников по этой дисциплине стало традицией кафедры материаловедения. Первый в нашей стране учебник для машиностроительных вузов был издан в МВТУ им. Н.Э. Баумана профессором И.И. Сидориным в 1930 г. В 1976 г. под его редакцией вышел в свет учебник «Основы материаловедения», в котором был обобщен опыт преподавания этой дисциплины студентам машиностроительных и приборостроительных специальностей. Во втором издании учебника, выпущенного в 1986 г. под общей редакцией профессора Б.Н. Арзамасова, промышленные материалы были классифицированы по эксплуатационным свойствам. Это усилило практическую направленность его разделов и предоставило будущим конструкторам и технологам лучшие возможности для оценки и выбора материалов. Авторы учебника были удостоены Государственной премии СССР. Положительная оценка учебника со стороны научно-технической общественности позволила авторам сохранить такую же структуру в настоящем издании.
Переработку учебника проводили с учетом развития конструкционных и инструментальных материалов, а также способов их обработки. Несмотря на то, что некоторые вопросы, рассмотренные в учебнике, являются факультативными для машиностроительных либо приборостроительных специальностей вузов, авторский коллектив считает их изложение целесообразным, полагая, что факультативность определяется учебной программой каждого вуза в отдельности.
Новый вариант учебника подготовлен авторским коллективом: профессорами Б.Н. Арзамасовым, Г.Г. Мухиным, Н.М. Рыжовым и доцентами В.И. Макаровой и В.И. Силаевой.
Авторы выражают благодарность Фонду авиационно-космических технологий за финансовую поддержку этого издания.
Авторы благодарны рецензентам, чл.-корр. РАН, д-ру техн. наук, проф. А.А. Ильину и д-ру техн. наук, проф. М.Г. Карпману, а также коллективу кафедры «Материаловедение». Авторы признательны инженеру кафедры С.А. Ко- туновой за помощь в оформлении книги.
ВВЕДЕНИЕ
Материаловедение - наука о материалах, их строении и свойствах уходит своими корнями в далекое прошлое. Во все времена использование природных и созданных человеком материалов зависело от прочности, надежности и долговечности выполненных из них изделий. Сегодня металлы и их сплавы являются самым обширным и универсальным по применению классом материалов. Центральное место среди них занимают две группы сплавов железа - стали и чугуны. Производство стали превышает производство алюминия - второго после железа металла по масштабам производства и применения - в несколько десятков раз.
Как всякая наука, материаловедение представляет собой совокупность знаний, полученных расчетным и экспериментальным путем, которые позволяют сделать обобщения и выводы, а также предвидеть пути развития науки о материалах.
Теоретической основой материаловедения являются соответствующие разделы физики и химии, однако наука о материалах развивается в основном экспериментальным путем.
Материаловедение является поистине интернациональной наукой, ее теоретические основы были заложены трудами ученых разных стран. Среди них необходимо выделить американца Джозайи Уилларда Гиббса (1839 - 1903 гг.) - основоположника физической химии.
Д.К. Чернов (1839-1921 гг.) открыл в 1868 г. критические точки в сталях, заложив тем самым научные основы термической обработки.
Значительный вклад в развитие материаловедения внесли русские ученые П.П. Аносов (1799 - 1851 гг.) и Д.И. Менделеев (1834 - 1907 гг.), англичанин Роберт Аустен (1843 - 1902 гг.), немец А. Мартенс (1850 - 1914 гг.).
XX век ознаменовался крупными достижениями в теории и практике материаловедения: были созданы высокопрочные материалы для деталей и инструментов, разработаны композиционные материалы, открыты сверхпроводники, применяющиеся в энергетике и других отраслях техники, открыты и использованы свойства полупроводников. Одновременно совершенствовались способы упрочнения деталей термической и химикотермической обработкой. Огромное значение для развития отечественного материаловедения в наше время имели работы А.А. Бочвара, Г.В. Кур- дюмова, В.Д. Садовского и В.А. Каргина.
Условия работы современных машин и приборов выдвигают требования прочности и стойкости материалов в широком интервале температур - от — 269 °С у сжиженного гелия до 1000 °С и выше при динамических нагрузках, в вакууме и в горячих потоках активных газов. Решение важнейших технических задач, связанных с экономным расходом материалов, уменьшением массы машин и приборов во многом зависит от развития материаловедения. Непрерывный процесс создания новых материалов для современной техники обогащает науку о материалах.
Авторы учебника принадлежат к школе профессора Ивана Ивановича Сидорина, который в 1925 г. начал читать курс лекций по материаловедению и термической обработке для студентов-механиков в МВТУ им. Н.Э. Баумана, а в 1929 г. там же организовал кафедру. Его инженерная и научная деятельность были связаны с развитием отечественной авиации, он активный участник создания первых металлических самолетов, построенных по проектам А.Н. Туполева. Профессор И.И. Сидорин был инициатором открытия Всероссийского института авиационных материалов, где в течение ряда лет он был заместителем начальника.
В годы Великой Отечественной войны профессор И.И. Сидорин был главным металлургом завода № 45, ныне Московского машиностроительного производственного предприятия «Салют», которому присвоен статус Федерального государственного унитарного предприятия.
Раздел 1
ЗАКОНОМЕРНОСТИ
ФОРМИРОВАНИЯ
СТРУКТУРЫ
МАТЕРИАЛОВ
Глава 1
СТРОЕНИЕ И СВОЙСТВА МАТЕРИАЛОВ
Кристаллические и аморфные тела
В природе существуют две разновидности твердых тел, различающиеся по своим свойствам, — кристаллические и аморфные.
Кристаллические тела остаются твердыми, т.е. сохраняют приданную им форму до вполне определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Так, у чистых металлов переход из одного состояния в другое протекает (рис. 1.1) при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное.
А
Примерами такого перехода могут служить помутнение неорганических стекол при нагреве, частичная кристаллизация плавленого янтаря при нагреве, а также резины при растяжении, сопровождающаяся упрочнением.
Кристаллические тела характеризуются упорядоченным расположением в пространстве частиц, из которых они составлены (ионов, атомов, молекул).
Свойства кристаллов зависят от электронного строения атомов и характера взаимодействия их в кристалле, от пространственного расположения частиц, химического состава. Все эти детали строения кристаллов описывает понятие «структура».
В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
Тонкая структура описывает расположение частиц в кристалле и электронов в атоме; изучают ее дифракционными методами (рентгенография, электронография, нейтронография). Анализируя дифракционную картину, получаемую при взаимодействии атомов кристалла с короткими волнами (А = Ю-10 ... 10-12 м) рентгеновских лучей (или волн электронов, нейтронов), можно получить обширную информацию о строении кристаллов.
Большинство материалов состоит из мелких кристалликов (зерен). Наблюдать такие мелкие структурные составляющие — микроструктуру можно с помощью оптического (до 10~7 м) или электронного (до 2-Ю-10 м) микроскопа.
Микроскопические методы дают возможность определить размеры и форму кристаллов, наличие различных по своей природе кристаллов, их распределение и относительные объемные количества, форму инородных включений и микропустот, ориентирование кристаллов, наличие специальных кристаллографических признаков (двойникование, линии скольжения и др.). Это далеко не полное перечисление характеризует обширность тех сведений, которые можно получить при помощи микроскопа.
Изучая строение кристаллов — макроструктуру — невооруженным глазом или при небольших увеличениях с помощью лупы, можно выявить характер излома, усадочные раковины, поры, размеры и форму крупных кристаллов. Используя специально приготовленные образцы (шлифованные и травленые), обнаруживают трещины, химическую неоднородность, волокнистость.
Исследование макроструктуры, несмотря на свою простоту, является очень ценным методом изучения материалов.
