- •Теория по геометрии 7-9 класс
- •Виды углов:
- •Свойство смежных углов:
- •Виды треугольников:
- •Свойства равных треугольников:
- •Признаки равенства треугольников:
- •Следствия из аксиомы:
- •Свойство внешнего угла треугольника:
- •Свойства прямоугольного треугольника:
- •Признаки равенства прямоугольных треугольников:
- •Признаки подобия треугольников:
- •Свойства среднего геометрического в прямоугольных треугольниках:
- •Табличные углы:
- •Свойства средней линии трапеции:
Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Обратная теорема Пифагора: если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то данный треугольник – прямоугольный.
Отношение двух величин – деление одной величины на другую (дробь).
Пропорция – равенство нескольких дробей.
Основное свойство пропорции:
*d
= c*bПодобные треугольники – треугольники, у которых углы равны, а стороны одного треугольника пропорциональны сходственным сторонам другого.
Сходственные стороны – стороны двух подобных треугольников, расположенные напротив равных углов.
Коэффициент подобия – отношение двух сходственных сторон подобных треугольников.
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
Коэффициент подобия равных треугольников равен единице.
Теорема о биссектрисе треугольника: биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.
Признаки подобия треугольников:
1. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны;
2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами, равны, то такие треугольники подобны;
3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Средняя линия треугольника – отрезок, соединяющий середины двух сторон треугольника.
Теорема о средней линии треугольника: средняя линия треугольника параллельна противоположной стороне и равна ее половине.
Среднее арифметическое для нескольких величин равно сумме этих величин, деленной на их количество.
Среднее геометрическое (пропорциональное) для нескольких величин равно квадратному корню из их произведения.
Свойства среднего геометрического в прямоугольных треугольниках:
· высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое для отрезков, на которые гипотенуза делится этой высотой;
· катет прямоугольного треугольника есть среднее геометрическое для гипотенузы и отрезка гипотенузы, заключенного между этим катетом и высотой, проведенной к гипотенузе.
Синус острого угла прямоугольного треугольника – отношение противолежащего катета к гипотенузе.
Косинус острого угла прямоугольного треугольника – отношение прилежащего катета к гипотенузе.
Тангенс острого угла прямоугольного треугольника – отношение противолежащего катета к прилежащему.
Котангенс острого угла прямоугольного треугольника – отношение прилежащего катета к прилежащему.
Основное тригонометрическое тождество: sin2(a) + cos2(a) = 1
Табличные углы:
Окружность – множество точек, равноудаленных от одной точки (центр окружности).
Радиус – отрезок, соединяющий центр окружности с любой точкой на окружности.
Хорда – отрезок, соединяющий любые две точки на окружности.
Диаметр – хорда, проходящая через центр окружности.
Соотношение диаметра и радиуса – диаметр равен двум радиусам.
Секущая – прямая, имеющая с окружностью две общих точки.
Касательная – прямая, имеющая с окружностью одну общую точку.
Теоремы о касательных:
1) Радиус, проведенный в точку касания, перпендикулярен касательной.
2) Отрезки касательных, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Теорема о хордах: Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Вписанный угол – угол, вершина которого лежит на окружности, а его стороны пересекают окружность.
Центральный угол – угол, вершина которого лежит в центре окружности, а его стороны пересекают окружность.
Дуга – часть окружности, ограниченная с двух сторон.
Вписанный угол равен половине дуги, на которую он опирается.
Центральный угол равен дуге, на которую он опирается.
Следствия из измерений центрального и вписанного углов:
1) вписанный угол равен половине центрального угла, опирающегося на ту же дугу;
2) если вписанные углы опираются на одну и ту же дугу, то они равны;
3) вписанный угол, опирающийся на диаметр равен 90 градусов.
Серединный перпендикуляр – прямая, проходящая через середину отрезка под углом 90 градусов.
Четыре замечательные точки треугольника:
· биссектрисы треугольника пересекаются в одной точке;
· медианы треугольника пересекаются в одной точке;
· высоты треугольника пересекаются в одной точке;
· серединные перпендикуляры треугольника пересекаются в одной точке.
