- •1 Природные резервуары, ловушки, залежи и месторождения нефти.
- •2 Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа.
- •3 Природные режимы залежей нефти и газа
- •4 Неоднородность продуктивного пласта
- •5 Цели и задачи геофизических исследований скважин
- •6. Классификация методов геофизических исследований скважин.
- •1 Гранулометрический состав нефтесодержащих пород. Методы его определения. Использование результатов определений в практике нефтедобычи.
- •2 Пористость горных пород. Коэффициенты полной, открытой и динамической пористости пород. Методы их определения. Применение сведений о пористости в нефтедобыче.
- •1 Закон Дарси. Коэффициент фильтрации. Зависимость коэффициента фильтрации от свойств пористой среды и фильтрующейся жидкости.
- •2 Уравнение притока. Индикаторная диаграмма. Определение параметров пласта и коэффициента продуктивности скважины
- •3 Приток жидкости к несовершенным скважинам. Виды несовершенства скважин. Приведенный радиус скважины
- •4. Неустановившаяся фильтрация упругой жидкости в упругой пористой среде. Основная формула теории упругого режима пластов.
- •5. Особенности фильтрации неньютоновских жидкостей.
- •6. Особенности фильтрации жидкости и газа в трещиноватых и трещиновато-пористых средах.
- •1 Структура производственного процесса разработки и эксплуатации месторождений углеводородов. Система скважин. Система поддержания пластового давления.
- •2. Сводная геолого-физическая характеристика продуктивного пласта.
- •Сводная геолого-физическая характеристика продуктивных пластов
- •3 Проектные документы на разработку нефтяных и нефтегазовых месторождений. Виды проектных документов, обосновываем в них положения. Рациональная разработка месторождения.
- •4. Основные требования к проектированию разработки месторождения. Выделение эксплуатационных объектов. Варианты разработки эксплуатационных объектов (размещение скважин, базовые методы разработки).
- •1 Требования к выделению эксплуатационных объектов
- •Геолого-технологические основы выбора вариантов разработки
- •5. Технологический (геологический) режим эксплуатации нефтяных, газовых и нагнетательных скважин. Ограничения режима эксплуатации скважины.
- •7 Стадии процесса разработки месторождения.
- •8 Геологические и фильтрационные модели месторождения углеводородов.
- •9 Двухфазная фильтрация под действием гидродинамических сил (перепада давления). Уравнения движения фаз.
- •10 Двухфазная фильтрация под действием капиллярных сил. Уравнения движения фаз.
- •11 Прогнозирование (проектирование) технологических показателей разработки
- •12 Прогнозирование (проектирование) технологических показателей разработки (нефтеизвлечения) на основе аналитической модели процесса.
- •13. Прогнозирование технологических показателей разработки (нефтеизвлечения) на основе цифровой модели процесса
- •14. Прогнозирование технологических показателей разработки (нефтеизвлечения) на основе статистической модели процесса.
- •15. Контроль нефтеизвлечения с использованием промысловых и гидродинамических исследований скважин.
- •16. Контроль нефтеизвлечения с использованием промыслово-геофизических исследований скважин.
- •17. Принципы и технологии регулирования (оптимизации) нефтеизвлечения. Геолого-технические мероприятия по поддержанию проектной добычи нефти.
- •18. Принципы и технологии регулирования (оптимизации) нефтеизвлечения. Геолого-технические мероприятия по увеличению (интенсификации) добычи нефти.
- •19 Оценка фактических и прогнозных результатов регулирования (оптимизации) нефтеизвлечения
- •20 Программные средства проектирования разработки месторождения.
- •21 Программные средства мониторинга и регулирования разработки месторождения.
- •22. Мероприятия по охране недр при реализации процесса разработки месторождения.
- •1. Освоение добывающих и нагнетательных скважин.
- •2. Определение пластового и забойного давления в нефтяной и газовой скважинах.
- •3 Техника и технология гидродинамических исследований скважин методом установившихся отборов (закачек). Коэффициент продуктивности (приемистости) скважины.
- •4 Техника и технология гидродинамических исследований скважин методом восстановления давления. Скин-фактор.
- •5 Техника и технология фонтанной эксплуатации нефтяных скважин (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации)
- •6. Основы теории газожидкостного подъемника. Общие принципы расчета распределения давления газожидкостной смеси по длине подъемных труб
- •7. Техника и технология газлифтной эксплуатации нефтяных скважин (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации).
- •8. Техника и технология эксплуатации нефтяных скважин штанговыми скважинными насосными установками (шсну) (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации)
- •9 Нагрузки на колонну насосных штанг. Динамометрирование установок.
- •10 Выбор шсну для эксплуатации нефтяной скважины в заданном технологическом режиме.
- •11 Техника и технология эксплуатации нефтяных скважин установками центробежных электронасосов (уэцн) (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации).
- •14. Назначение и классификация подземных (текущих) ремонтов скважин. Определение межремонтного периода (мрп).
- •15. Особенности эксплуатации обводненных нефтяных скважин
- •16. Особенности эксплуатации нефтяных скважин с повышенным содержанием механических примесей в продукции.
- •17. Особенности эксплуатации нефтяных скважин при отложении асфальтосмолопарафиновых веществ.
- •18.Особенности эксплуатации нефтяных скважин при отложении солей.
- •20 Техника и технология воздействия на пзп
- •21.Техника и технология ремонтно-изоляционных работ.
- •22.Наземные сооружения и оборудование для ремонтных работ в скважинах.
- •1 Техника и технология искусственного заводнения нефтяной залежи. Особенности эксплуатации нагнетательных скважин (подземное и наземное оборудование, режим эксплуатации, исследование скважины).
- •2.Классификация методов увеличения нефтеизвлечения (мун).
- •3.Технология и техника физико-химических мун.
- •4.Технология и техника микробиологических мун.
- •5. Технология и техника газовых мун (методов вытеснения нефти смешивающимися с нею агентами).
- •6. Технология и техника тепловых мун.
- •1) Закачка пара
- •2) Закачка горячей воды
- •3) Пароциклическая обработка
- •4) Внутрипластовое горение.
- •7. Критерии выбора участка для физико-химического воздействия с целью повышения нефтеизвлечения.
- •1.Понятие о системах сбора и подготовки нефти, газа и воды.
- •2.Сепарация нефти.
- •3.Продукция нефтяных скважин. Водонефтяные эмульсии, свойства ,методы разделения.
- •4.Измерение продукции нефтяных скважин. Автоматизированные групповые замерные установки.
- •5.Промысловые сборные трубопроводы. Классификация трубопроводов.
- •6.Борьба с отложениями парафина и отложениями солей при эксплуатации сборных трубопроводов.
- •7. Резервуары и резервуарные парки.
- •8. Борьба с коррозией при эксплуатации трубопроводов и нефтепромыслового оборудования.
- •9 Подготовка нефти товарных кондиций
16. Особенности эксплуатации нефтяных скважин с повышенным содержанием механических примесей в продукции.
Поздняя стадия разработки нефтяного месторождения сопровождается высоким обводнением добываемой продукции скважин. Для поддержания уровня добычи нефти необходимо увеличение дебитов скважин, которое неизбежно приводит к высоким скоростям фильтрации, способствующим срыву и выносу мехпримесей из слабоцементированных коллекторов призабойной зоны вследствие разрушения скелета коллектора на стенках каналов и трещин из-за образования микротрещин. При этом процесс разрушения коллектора будет непрерывным из- за постоянного выноса в скважину частиц разрушенной породы. Возможно, усилением этих процессов объясняется часто встречающийся эффект – повышенный вынос КВЧ при забойном давлении ниже давления насыщения. Основную долю составляют частицы, выносимые из пласта в процессе эксплуатации скважин, но при этом значительная часть мехпримесей имеет непластовое происхождение: продукты коррозии подземного оборудования и частицы, вносимые в скважину в результате проведения ремонтов и геолого-технических мероприятий; нерастворимые твердые включения в составе жидкости глушения или обломки проппанта после проведения гидроразрыва пласта, а также продукты, образованные взаимодействием химически несовместимых перекачиваемых жидкостей. причины разрушения коллектора :
-Геологические: глубина залегания пласта и пластовое давление; горизонтальная составляющая горного давления; степень сцементированности породы пласта, ее уплотненность и естественная проницаемость; характер добываемого флюида и его фазовое состояние; характеристика пластового песка (угловатость, глинистость); внедрение подошвенных вод в залежь и растворение цементирую- щего материала; продолжительность выноса песка.
-Технологические: дебит скважины; величина репрессии и депрессии на пласт; ухудшение естественной проницаемости (скин-эффект); фильтрационные нагрузки и нарушение капиллярного сцепления песка.
-Технические: конструкция забоя; поверхность забоя, через которую проис- ходит фильтрация (интервал вскрытия пласта, открыты или закупорены перфора- ционные каналы и т.д.). Среди основных факторов, определяющих величину концентрации приме- сей, традиционно выделяют следующие: глубина залегания пласта и пластовое давление; проницаемость пласта; физико-химические свойства добываемой жид- кости; обводненность; характеристики частиц песка; дебит скважины; плотность перфорации; депрессия; тип рабочей жидкости, используемой в процессе ремонт- но-восстановительных работ. Применительно к подземному насосному оборудованию механические примеси являются главной причиной поломок и образования дефектов конструкции.
Механические примеси, попадая в штанговый насос, существенным образом влияют на работоспособность плунжерной и клапанной пары. Песок вызывает катастрофический износ резьбовых соединений насосных труб – при малейшей негерметичности соединений, особенно в обводненных скважинах, он быстро разъедает резьбу и через образовавшийся канал протекает жидкость, снижая подачу, а в дальнейшем приводит к полному ее прекращению. Наличие большого количества плохо проницаемых осадков на забое скважины впервую очередь приводит к снижению дебита по жидкости, т.к. концентрированная смесь в скважине увеличивает противодавление на забой и ухудшает условия естественного притока жидкости. Технические или технологические остановки скважин способствуют осаждению песка на забой и образованию пробок, что нередко является самой тяжелой неполадкой при эксплуатации песочных скважин. При осаждении песка в НКТ насос заклинивает, как правило, при оста новке скважинного оборудования. Длительные остановки насоса сопровождаются образованием над насосом большого количества твердых осадкообразующих включений (до 20 м в высоту). При этом иногда происходит заклинивание плунжера в цилиндре насоса и штанг в трубах. В трубных насосах при попытках сдвинуть плунжер с места вверх немедленно произойдет его заклинивание в цилиндре из-за попадания массы песка в зазор и резкого увеличения сил трения плунжера в цилиндре, даже без сильных задиров рабочих поверхностей. Аналогичная картина наблюдается привставном насосе, когда из-за осадка песка его не удается сорвать с посадочного кольца. При заклинивании плунжера или прихвате вставного насоса приходится совместно поднимать штанги и трубы, что вызывает осложнения в подземном ремонте. Явления пробкообразования в скважинах и действие песка на подземную часть насосной установки взаимосвязаны: снижение или прекращение подачи насоса вследствие быстрого износа рабочих пар оборудования, размыва трубных соединений и т.д. вызывает образование пробки на забое. Поэтому первопричиной прекращения подачи жидкости является не образование пробки на забое скважины, а износ насосного оборудования.
На сегодняшний день фильтры (забойные, перед насосом, в составе насоса) являются наиболее эффективной (по соотношению затраты-эф- фект) и распространенной технологией защиты скважины и глубиннонасосного оборудования от вредного влияния механических примесей. При этом среди различных конструкций наилучшие фильтрационные свойства демонстрируют каркасно-проволочные фильтры, однако, и они подвержены интенсивному засорению.
