- •1 Природные резервуары, ловушки, залежи и месторождения нефти.
- •2 Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа.
- •3 Природные режимы залежей нефти и газа
- •4 Неоднородность продуктивного пласта
- •5 Цели и задачи геофизических исследований скважин
- •6. Классификация методов геофизических исследований скважин.
- •1 Гранулометрический состав нефтесодержащих пород. Методы его определения. Использование результатов определений в практике нефтедобычи.
- •2 Пористость горных пород. Коэффициенты полной, открытой и динамической пористости пород. Методы их определения. Применение сведений о пористости в нефтедобыче.
- •1 Закон Дарси. Коэффициент фильтрации. Зависимость коэффициента фильтрации от свойств пористой среды и фильтрующейся жидкости.
- •2 Уравнение притока. Индикаторная диаграмма. Определение параметров пласта и коэффициента продуктивности скважины
- •3 Приток жидкости к несовершенным скважинам. Виды несовершенства скважин. Приведенный радиус скважины
- •4. Неустановившаяся фильтрация упругой жидкости в упругой пористой среде. Основная формула теории упругого режима пластов.
- •5. Особенности фильтрации неньютоновских жидкостей.
- •6. Особенности фильтрации жидкости и газа в трещиноватых и трещиновато-пористых средах.
- •1 Структура производственного процесса разработки и эксплуатации месторождений углеводородов. Система скважин. Система поддержания пластового давления.
- •2. Сводная геолого-физическая характеристика продуктивного пласта.
- •Сводная геолого-физическая характеристика продуктивных пластов
- •3 Проектные документы на разработку нефтяных и нефтегазовых месторождений. Виды проектных документов, обосновываем в них положения. Рациональная разработка месторождения.
- •4. Основные требования к проектированию разработки месторождения. Выделение эксплуатационных объектов. Варианты разработки эксплуатационных объектов (размещение скважин, базовые методы разработки).
- •1 Требования к выделению эксплуатационных объектов
- •Геолого-технологические основы выбора вариантов разработки
- •5. Технологический (геологический) режим эксплуатации нефтяных, газовых и нагнетательных скважин. Ограничения режима эксплуатации скважины.
- •7 Стадии процесса разработки месторождения.
- •8 Геологические и фильтрационные модели месторождения углеводородов.
- •9 Двухфазная фильтрация под действием гидродинамических сил (перепада давления). Уравнения движения фаз.
- •10 Двухфазная фильтрация под действием капиллярных сил. Уравнения движения фаз.
- •11 Прогнозирование (проектирование) технологических показателей разработки
- •12 Прогнозирование (проектирование) технологических показателей разработки (нефтеизвлечения) на основе аналитической модели процесса.
- •13. Прогнозирование технологических показателей разработки (нефтеизвлечения) на основе цифровой модели процесса
- •14. Прогнозирование технологических показателей разработки (нефтеизвлечения) на основе статистической модели процесса.
- •15. Контроль нефтеизвлечения с использованием промысловых и гидродинамических исследований скважин.
- •16. Контроль нефтеизвлечения с использованием промыслово-геофизических исследований скважин.
- •17. Принципы и технологии регулирования (оптимизации) нефтеизвлечения. Геолого-технические мероприятия по поддержанию проектной добычи нефти.
- •18. Принципы и технологии регулирования (оптимизации) нефтеизвлечения. Геолого-технические мероприятия по увеличению (интенсификации) добычи нефти.
- •19 Оценка фактических и прогнозных результатов регулирования (оптимизации) нефтеизвлечения
- •20 Программные средства проектирования разработки месторождения.
- •21 Программные средства мониторинга и регулирования разработки месторождения.
- •22. Мероприятия по охране недр при реализации процесса разработки месторождения.
- •1. Освоение добывающих и нагнетательных скважин.
- •2. Определение пластового и забойного давления в нефтяной и газовой скважинах.
- •3 Техника и технология гидродинамических исследований скважин методом установившихся отборов (закачек). Коэффициент продуктивности (приемистости) скважины.
- •4 Техника и технология гидродинамических исследований скважин методом восстановления давления. Скин-фактор.
- •5 Техника и технология фонтанной эксплуатации нефтяных скважин (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации)
- •6. Основы теории газожидкостного подъемника. Общие принципы расчета распределения давления газожидкостной смеси по длине подъемных труб
- •7. Техника и технология газлифтной эксплуатации нефтяных скважин (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации).
- •8. Техника и технология эксплуатации нефтяных скважин штанговыми скважинными насосными установками (шсну) (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации)
- •9 Нагрузки на колонну насосных штанг. Динамометрирование установок.
- •10 Выбор шсну для эксплуатации нефтяной скважины в заданном технологическом режиме.
- •11 Техника и технология эксплуатации нефтяных скважин установками центробежных электронасосов (уэцн) (оборудование, режим эксплуатации скважины, исследование скважины, осложнения эксплуатации).
- •14. Назначение и классификация подземных (текущих) ремонтов скважин. Определение межремонтного периода (мрп).
- •15. Особенности эксплуатации обводненных нефтяных скважин
- •16. Особенности эксплуатации нефтяных скважин с повышенным содержанием механических примесей в продукции.
- •17. Особенности эксплуатации нефтяных скважин при отложении асфальтосмолопарафиновых веществ.
- •18.Особенности эксплуатации нефтяных скважин при отложении солей.
- •20 Техника и технология воздействия на пзп
- •21.Техника и технология ремонтно-изоляционных работ.
- •22.Наземные сооружения и оборудование для ремонтных работ в скважинах.
- •1 Техника и технология искусственного заводнения нефтяной залежи. Особенности эксплуатации нагнетательных скважин (подземное и наземное оборудование, режим эксплуатации, исследование скважины).
- •2.Классификация методов увеличения нефтеизвлечения (мун).
- •3.Технология и техника физико-химических мун.
- •4.Технология и техника микробиологических мун.
- •5. Технология и техника газовых мун (методов вытеснения нефти смешивающимися с нею агентами).
- •6. Технология и техника тепловых мун.
- •1) Закачка пара
- •2) Закачка горячей воды
- •3) Пароциклическая обработка
- •4) Внутрипластовое горение.
- •7. Критерии выбора участка для физико-химического воздействия с целью повышения нефтеизвлечения.
- •1.Понятие о системах сбора и подготовки нефти, газа и воды.
- •2.Сепарация нефти.
- •3.Продукция нефтяных скважин. Водонефтяные эмульсии, свойства ,методы разделения.
- •4.Измерение продукции нефтяных скважин. Автоматизированные групповые замерные установки.
- •5.Промысловые сборные трубопроводы. Классификация трубопроводов.
- •6.Борьба с отложениями парафина и отложениями солей при эксплуатации сборных трубопроводов.
- •7. Резервуары и резервуарные парки.
- •8. Борьба с коррозией при эксплуатации трубопроводов и нефтепромыслового оборудования.
- •9 Подготовка нефти товарных кондиций
5. Особенности фильтрации неньютоновских жидкостей.
Классификация неньютоновских жидкостей.
Особенности фильтрации неньютоновских нефтей связаны с повышенным содержанием высокомолекулярных компонентов – смол, асфальтенов, парафина.
Классификация неньютоновских жидкостей обычно основывается на виде зависимости скорости сдвига ’ dv / dr от величины касательного напряжения .
Все неньютоновские жидкости могут быть разбиты на три класса:
1. Системы, для которых скорость сдвига зависит только от величины касательного напряжения, т.е dv / dr f ( ), - неньютоновские вязкие жидкости.
2. Системы, для которых скорость сдвига зависит как от величины касательного напряжения, так и от времени dv / dr f ( ,t). Если с течением времени при заданной величине ’ напряжение уменьшается, то жидкость называется тиксотропной, а если возрастает – реопектической.
3. Системы, обладающие свойствами как твердого тела, так и жидкости и частично проявляющие упругое восстановление формы после снятия напряжения – вязкоупругие.
Тиксотропия - специфическое свойство коагуляционных структур. Разрушение структуры выражается в разрыве контактов между частицами дисперсной фазы, а ее тиксотропное восстановление - в возобновлении этих контактов вследствие подвижности среды и броуновского движения частиц. Неньютоновские вязкие жидкости в свою очередь могут быть разделены на две группы:
а) жидкости, обладающие начальным напряжением сдвига 0, то есть жидкости, которые начинают течь лишь после того, как касательное напряжение превысит некоторый предел ;
б) жидкости, не обладающие начальным напряжением сдвига. Примером жидкости с начальным напряжением сдвига является вязкопластичная жидкость, или жидкость Бингама-Шведова. Ее реологическое уравнение имеет вид
где -начальное напряжение сдвига, - коэффициент пластической вязкости.
Модель вязкопластичной жидкости широко используется при описании поведения глинистых растворов, буровых шламов и т.п.
Важный эффект фильтрации с предельным градиентом давления – возможность образования в пласте застойных зон, где движение нефти отсутствует. Эти зоны образуются в тех участках пласта, где градиент давления меньше предельного.
Показано, что для
получения качественных результатов
при моделировании фильтрации сложных
сред необходимо учитывать эффекты
релаксации. При этом течение жидкости
осуществляется по закону фильтрации,
имеющему неравновесный характер,
например
где w и р – время релаксации скорости фильтрации и давления
6. Особенности фильтрации жидкости и газа в трещиноватых и трещиновато-пористых средах.
Схемы чисто трещиноватой (а) и трещиновато-пористой (б) сред;
Для понимания особенностей фильтрации жидкости и газа в трещиноватых породах в нефтегазовой подземной гидромеханике рассматривают две модели пород - чисто трещиноватые [блоки породы, расположенны между трещинами, практически непроницаемы, движениу жидкости и газа происходит только по трещинам(сланцы, доломиты)] и трещиновато-пористые[представляет собой совокупность пористых блоков, отделенных один от другого развитой системой трещин. При этом размеры трещин значительно превосходят характерные размеры пор, так что проницаемость системы трещин к1 значительно больше, чем проницаемость системы пор в блоках к2 . В то же время трещины занимают гораздо меньший объем, чем поры, гак что коэффициент трещиноватости m1 - отношение объема, занятого трещинами, к общему объему породы существенно меньше пористости отдельных блоков m2 (известняки,песчаники,алевролиты,долом)].
Рассмотрим характеристику чисто трещиноватой породы. Трещин представляет собой узкую щель, два измерения которого в много раз больше третьего. Коэффициент трещиноватости составляет обычно долю процента. Коэффициент трещиноватости m1 так же, как и коэффициент проницаемости к1, определяется густотой и раскрытием трещин. Представим себе модель трещиноватой среды с упорядоченной системой параллельных и равноотстоящих трещин раскрытием σ. Густота трещин Г = n/h. а коэффициент трещиноватости
m1 = acn σ /(ach) = Г σ .
Если в пласте имеются две взаимноперпендикулярные системы трещин с одинаковыми густотой и раскрытием, то m1 = 2Г σ. если три, то m1= ЗГ σ; в общем случае можно считать, что
m1=ӨГσ (3) , где Ө - безразмерный коэффициент, зависящий от геометрии систем трещин в породе.
Движение жидкости
или газа в трещине можно представить
себе как движение в узкой щели между
двуям параллельными плоскими стенками
расстояние между ними σ; для такого
движения справедлива формула Буссинеска,
согласно которой средняя скорость
движения жидкости в щели составляет:
(4)
где n -динамический
коэффициент вязкости; dp/dx - градиент
давления. Перейдя к скорости фильтрации
w = mv получим:
(5)
Сопоставим эту формулу с законом Дарси и использовав соотношение (1), найдем выражение для коэффициента проницаемости трещиноватой породы
(6)
Экспериментами
на образцах горных пород установленка
зависимость проницаемости трещиноватых
пород от пластового давления, более
существенная, чем зависимость от давления
проницаемости пористых сред. Из формул
(6) зависимость к (р) можно получить
следующим образом. Горное давление,
которое можно считать постоянным,
уравновешивается напряжениям в скелете
породы и давление жидкости в трещинах.
При снижении пластового давления
увеличивается нагрузка скелет породы
и уменьшается раскрытие трещин. Если
считать, что деформации в трещиноватом
пласте упруги и малы по величине, то
зависимость раскрытия трещин от давления
можно считать линейной:
гдеВ параметр трещиноватой среды, зависящий от упругих свойств геометрии трещин. Исходя из формул (6) и (7), можно записать зависимость коэффициента проницаемости к1 от давления следующим образом:
(12.6)
где к° коэффициент проницаемости трещиноватой породы при давлении р0 .
Наиболее ярко особенности фильтрации в трещиновато-пористой среде проявляются в неустановившихся процессах. Система трещин и система пор представляют собой две среды с разными масштабами (рис.б). Средний размер пор составляет 1-100 мкм, протяженность трещин-от нескольких сантиметров до десятков метров. Так как коэффициент пористости блоков m2 на один-два порядка выше, чем коэффициент трещиноватости m1 , то большая часть жидкости находится в порах. Чаще всего пористые блоки малопроницаемые (к2 « к1 ) и жидкость, фильтруясь из них в трещины, движется в скважины в основном по трещинам, проводимость которых значительно выше, чем пористых блоков.
Характеристики движения в блоках и трещинах оказываются различными: давление в блоках р2 больше, чем давление в трещинах р1 скорость фильтрации в блоках w2 значительно меньше, чем в трещинах w1. Поэтому трещиновато-пористую среду рассматривают как совмещение двух пористых сред с порами разных масштабов: среда 1 - укрупненная среда, в которой роль зерен играют пористые блоки, которые рассматриваются как непроницаемые, а роль поровых каналов - трещины, давление в этой среде р1 скорость фильтрации w1,; среда 2-система пористых блоков, состоящих из зерен, разделенных мелкими порами, давление в ней р2 , скорость фильтрации w2 . Таким образом, р1 -среднее давление в трещинах в окрестности данной точки, р2 - среднее давление в блоках и аналогично для скоростей фильтрации. Важная особенность неустановившейся фильтрации в трещиновато-пористой среде - интенсивный обмен жидкостью между обеими средами, т.е. между пористым блокам и трещинами, обусловленный различием давлений в этих средах р2 и р1),. Обмен жидкостью происходит при достаточно медленном изменении давления с течением времени, поэтому этот процесс можно считать квазистационарным, т. е. не зависящим явно от времени. Очевидно, что при движении слабосжимаемой жидкости масса жидкости, вытекающей из блоков в трещине за единицу времени в единицу объема породы (интенсивность перетока q), пропорционально разности давлений р2 –р1 плотность р0 (считая, что плотность мала меняется в интервале давления от р2 до р1) и обратно пропорционально вязкости n, т. е.
(12.9)
где а0 - безразмерный коэффициент, зависящий от геометрических характеристик блоков - проницаемости к2 , среднего размера блоков l и безразмерных величин, характеризующих форму блоков;
Соотношение (12.9)
должно быть уточнено для случая, если
плотность сильно зависит от давления.
Например, при фильтрации совершенного
газа интенсивность перетоков из блоков
в трещины представляется в виде
где р0 фиксированное давление, соответствующее плотности р0 .
Вопросы по дисциплинам «Разработка и проектирование нефтяных месторождений», «Контроль и регулирование разработки нефтяных и газовых месторождений»(окончательный вариант)
