- •Лекция 4 Конические зубчатые передачи
- •Геометрические параметры конического зубчатого колеса
- •Основные геометрические параметры конической прямозубой передачи
- •Проектный расчет конической передачи
- •Последовательность проектного расчета закрытой передачи
- •Силы в зацеплении конической передачи
- •Расчет конических передач на контактную прочность и изгиб
- •Проверочный расчет передачи по контактным напряжениям
- •Проверочный расчет зубьев на изгиб
- •Классификация
- •Основные геометрические параметры червяка
- •О сновные геометрические параметры червячного колеса
- •Кинематические параметры передачи
- •Силы в червячном зацеплении
- •Критерии работоспособности червячной передачи
- •Материалы червяка и червячного колеса
- •Проектный расчет
- •Расчёт на прочность по напряжениям изгиба
- •Проверка червяка на прочность и жесткость
- •Тепловой расчет червячных редукторов
- •Способы предотвращения перегрева
- •Контрольные вопросы
Материалы червяка и червячного колеса
В связи с высокими скоростями скольжения материалы червячной пары должны обладать антифрикционными свойствами, износостойкостью и пониженной склонностью к заеданию.
Червяки изготовляют из углеродистых или легированных сталей. Наибольшей нагрузочной способностью обладают пары, у которых витки червяка термообработаны до высокой твердости с последующим шлифованием.
Червячное
колесо обычно
выполняют составным: венец - из
антифрикционных, относительно дорогих
и малопрочных материалов, центр - из
стали, при небольших нагрузках - из
чугуна. Венцы червячных колес изготавливают
преимущественно из бронзы, реже из
чугуна Оловянные бронзы типа ОФ10-1, ОНФ
считаются лучшим материалом, однако
они дороги и дефицитны. Применяют при
больших скоростях
=5…25
м/с. Безоловянистые бронзы, например
алюминиево-железистые типа Бр.АЖ9-4,
обладают повышенными механическими
характеристиками, но имеют пониженные
противозадирные свойства. Их применяют
при
<5M/C.
Чугун применяют при
<2м/с,
преимущественно в ручных приводах.
Проектный расчет
Определяем
межосевое расстояние
передачи
из условия
контактной прочности зубьев:
(7)
Согласовывают со стандартом :
1-й ряд (предпочтительно) 50; 63; 80; 100; 125; 160; 200; 250; 315; 400;
2-й ряд 140; 180; 225; 280; 355.
По величине межосевого расстояния определяют расчётный модуль: m = 2aw/ (q + z2), согласовывают со стандартом и находят основные размеры червяка и колеса.
Расчёт на прочность по напряжениям изгиба
Этот расчёт является проверочным. На изгиб рассчитывают только зубья червячного колеса.
С учётом особенностей червячной передачи формула изгибной выносливости зубьев червячного колеса будет иметь вид
F = 0,7Ft2kFYF / (b2mn) [F], (8)
где mn = m cos;
Коэффициенты расчётной нагрузки kH = kF = k k.
При достаточно высокой точности принимают значение динамического коэффициента k 1 при 3 м/с и k = 1,0…1,3 при 3 м/с. Учитывая хорошую прирабатываемость материалов червячной пары при постоянной внешней нагрузке принимают коэффициент концентрации нагрузки k 1, при переменной – k = 1,05…1,2.
Проверка червяка на прочность и жесткость
При проверочном расчете тело червяка рассматривают как цилиндрический брус круглого сечения, лежащий на двух опорах и работающий на изгиб и кручение.
Чрезмерные прогибы червяка вызывают недопустимую концентрацию нагрузки в зацеплении, поэтому максимальные прогибы ограничиваются допускаемыми значениями, выражаемыми в долях модуля червяка.
Приближенно максимальный прогиб можно рассчитать по формуле, выведенной в сопротивлении материалов для двухопорной балки постоянного сечения:
(9)
где
-
равнодействующая окружной и радиальной
силы;
I
- осевой момент инерции сечения:
.
Условие
жёсткости червяка запишется в виде
.
Если условие не выполняется, то нужно увеличить коэффициент диаметра червяка q либо уменьшить расстояние l между опорами.
