- •1. Основные этапы развития философии науки
- •Позитивизм о. Конта, г. Спенсера, дж. С. Милля (первый позитивизм) позитивистская концепция соотношения философии и науки
- •Концепция научного познания о. Конта, дж. С. Милля, г. Спенсера
- •Позитивистский подход к проблеме систематизации знания и классификации наук
- •Эмпириокритицизм (второй позитивизм)
- •Проблема обоснования фундаментальных понятий и принципов науки
- •Критика эмпириокритицизма и проблема преодоления наивно-реалистической гносеологии
- •Неопозитивизм (третий позитивизм) становление неопозитивистской методологии. Логический атомизм
- •Неопозитивистские концепции эмпирического и теоретического. Принцип верификации
- •Развитие философии науки во второй половине XX века
- •Критический рационализм к. Поппера
- •Концепция исследовательских программ и. Лакатоса
- •Концепция исторической динамики науки т. Куна
- •«Анархистская эпистемология» п. Фейерабенда
- •Проблема инноваций и преемственности в развитии науки (дж. Холтон, м. Полани, с. Тулмин)
- •Социология науки. Проблема интернализма и экстернализма
- •Отечественная философия науки во второй половине XX века
- •Глава 2. Научное познание в социокультурном измерении место и роль науки в культуре техногенной цивилизации
- •Традиционные и техногенные цивилизации
- •Глобальные кризисы и проблема ценности научно-технического прогресса
- •Специфика научного познания главные отличительные признаки науки
- •Научное и обыденное познание
- •Генезис научного познания
- •Преднаука и развитая наука
- •Духовная революция античности
- •Возникновение естествознания
- •Формирование технических и социально-гуманитарных наук
- •Институциональная организация науки и её историческая эволюция
- •3. Структура научного познания эмпирический и теоретический уровни научного исследования
- •Понятия эмпирического и теоретического (основные признаки)
- •Структура эмпирического исследования
- •Эксперименты и данные наблюдения
- •Систематические и случайные наблюдения
- •Процедуры перехода к эмпирическим зависимостям и фактам
- •Структура теоретического исследования
- •Теоретические модели в структуре теории
- •Особенности функционирования теорий. Математический аппарат и его интерпретация
- •Основания науки
- •Идеалы и нормы исследовательской деятельности
- •Первый уровень
- •Второй уровень
- •Научная картина мира
- •Философские основания науки
- •Глава 4. Философия и наука философия как рефлексия над основаниями культуры
- •Прогностические функции философского знания
- •Глава 5. Динамика научного исследования
- •Взаимодействие научной картины мира и опыта
- •Формирование частных теоретических схем и законов
- •Выдвижение гипотез и их предпосылки
- •Процедуры конструктивного обоснования теоретических схем
- •Логика открытия и логика оправдания гипотезы
- •Логика построения развитых теорий в классической науке
- •Особенности формирования научной гипотезы
- •Парадигмальные образцы решения задач
- •Особенности построения развитых, математизированных теорий в современной науке
- •Применение метода математической гипотезы
- •Особенности интерпретации математического аппарата
- •Глава 6. Научные революции и смена типов научной рациональности феномен научных революций. Внутридисциплинарные революции
- •Парадоксы и проблемные ситуации как предпосылки научной революции
- •Философские предпосылки перестройки оснований науки
- •От методологических идей к теории и новой картине мира
- •Научные революции и междисциплинарные взаимодействия
- •Глобальные научные революции как изменение типа рациональности научная революция как выбор новых стратегий исследования. Потенциальные истории науки
- •Глобальные научные революции: от классической к постнеклассической науке
- •Глава 7. Стратегии научного исследования в эпоху постнеклассической науки универсальный эволюционизм — основа современной научной картины мира
- •Научная картина мира и новые мировоззренческие ориентиры цивилизационного развития
- •Рациональность в современной культуре. Наука и псевдонаука
Логика открытия и логика оправдания гипотезы
В стандартной модели развития теории, которая разрабатывалась и рамках позитивистской традиции, логика открытия и логика обоснования резко разделялись и противопоставлялись друг другу. Отголоски этого противопоставления можно найти и в современных постпозитивистских концепциях философии науки. Так, в концепции, развиваемой П. Фейерабендом, подчёркивается, что генерация новых идей не подчиняется никаким методологическим нормам и в этом смысле не подлежит рациональной реконструкции.
В процессе творчества, как подчёркивает П. Фейерабенд, действует принцип «все дозволено», а поэтому необходимо идеал методологического рационализма заменить идеалом методологического анархизма.
В концепции Фейерабенда особо отмечается, что различные социокультурные факторы активно влияют на процесс генерации научных гипотез. Но отсюда не вытекает, что нельзя выявить никаких внутренних для науки закономерностей формирования новых идей. Фейерабенд, по традиции резко разделив этап формирования гипотезы и этап её обоснования, во многом отрезал пути к выяснению этих закономерностей. Между тем рассмотрение этих двух этапов во взаимодействии и с учётом деятельностной природы научного знания позволяет заключить, что процесс обоснования гипотезы вносит не менее важный вклад в развитие концептуального аппарата науки, чем процесс генерации гипотезы. В ходе обоснования происходит развитие содержания научных понятий, что, в свою очередь, формирует концептуальные средства для построения будущих гипотетических моделей науки.
Описанный познавательный цикл, связывающий два этапа формирования теории, не обязательно осуществляется одним исследователем. Более того, как свидетельствует история науки, эта деятельность, как правило, осуществляется многими исследователями, образующими научные сообщества. В нашем примере с историей планетарной модели атома ключевыми фигурами, творчество которых обеспечило генерацию и развитие этой модели, выступали Нагаока, Вин и Резерфорд.
В принципе, их можно рассматривать как некоторого коллективного теоретика, который осуществил необходимые операции для построения теории. Дальнейшее её развитие, связанное с элиминацией неконструктивного объекта (электронная орбита) и построением квантово-механи-ческой модели атома, осуществлялось уже другими исследователями (Н. Бор, А. Зоммерфельд, В. Гейзенберг). Но их деятельность, в принципе, также может быть рассмотрена как творчество коллективного теоретика, осуществляющего познавательный цикл: движение от оснований науки к гипотетической модели, её конструктивному обоснованию и затем вновь к анализу и развитию оснований науки.
В этом процессе создаваемая картина исследуемой реальности развивается как под воздействием непосредственных экспериментов, так и опосредованно, через теоретические схемы. В принципе, развитие эксперимента и конструктивное обоснование создаваемых теоретических схем уже на этапе построения частных теорий способны неявно втянуть в орбиту исследования новый тип взаимодействий, структура которых не представлена в картине исследуемой реальности. В этом случае возникает рассогласование между ней и некоторыми теоретическими схемами, а также некоторыми экспериментами. Такое рассогласование может потребовать изменения прежней картины исследуемой реальности. Необходимость такого рода изменений осознается исследователем в форме проблемных ситуаций. Однако разрешение последних и перестройка сложившейся картины мира представляются отнюдь не простым процессом. Этот процесс предполагает экспликацию и критический анализ философских оснований прежней картины исследуемой реальности, а также анализ идеалов познания с учётом накопленного наукой эмпирического и теоретического материала.
В результате такого анализа может быть создана новая, на первых порах гипотетическая картина исследуемой реальности, которая затем адаптируется к опыту и теоретическим знаниям. Её обоснование предполагает ассимиляцию накопленного эмпирического и теоретического материала и, кроме того, предсказание новых фактов и генерацию новых теоретических схем. Плюс ко всему новая картина реальности должна быть вписана в культуру соответствующей исторической эпохи, адаптирована к существующим ценностям и нормативам познавательной деятельности. Учитывая, что процесс такого обоснования может занять довольно длительный период, новая система представлений о реальности не сразу выходит из гипотетической стадии и не сразу принимается большинством исследователей. Многие из них могут придерживаться старой картины мира, которая получила своё эмпирическое, теоретическое и философское обоснование на предшествующих стадиях научного развития. Рассогласование между ней и новыми теоретическими моделями или результатами эксперимента воспринимается такими исследователями как временная аномалия, которая может быть устранена в будущем путём коррекции теоретических схем и выработки новых моделей, объясняющих опыт.
Так возникает конкурентная борьба между различными картинами исследуемой реальности, каждая из которых вводит различное видение изучаемых наукой объектов и взаимодействий. Типичным примером такой борьбы может служить тот период развития классической электродинамики, когда в ней соперничали исследовательская программа Ампера — Вебера и исследовательская программа Фарадея.
Первая основывалась на механической картине мира, слегка модифицированной применительно к открытиям теории электричества (в этой картине предполагалось, что взаимодействие тел и зарядов осуществляется путём мгновенной передачи сил в пустоте); вторая вводила новую картину физической реальности (представление о полях сил, с которыми взаимодействуют заряды и тела, когда передача сил осуществляется с конечной скоростью от точки к точке). Фарадеевская картина физической реальности прошла длительный этап уточнения и развития и лишь к концу XIX столетия утвердилась в качестве электродинамической картины мира. Процесс её превращения в доминирующую систему представлений о физической реальности был обусловлен как генерированными ей экспериментальными и теоретическими открытиями, так и развитием её философского обоснования, посредством которого новая физическая картина мира была вписана в культуру XIX столетия.
Развитие теоретического знания на уровне частных теоретических схем и законов подготавливает переход к построению развитой теории. Становление этой формы теоретического знания можно выделить как третью ситуацию, характеризующую динамику научного познания.
