Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 4 матем модель ХТО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
196.61 Кб
Скачать

Тепловой баланс системы.

Т=Ткин.+Тг/д +Тт/о

Температура принадлежит к числу факторов наиболее сильно влияющих на скорость химической реакции, поскольку протекание большинства химических процессов в значительной степени зависит от явления переноса тепла в системе.

Величина Ткинетич в структуре теплового баланса для всех типов моделей записывается как сумма произведений скорости каждой стадии на соответствующий ей тепловой эффект. Скорость стадии берётся по модулю, а знак сомножителя определяется знаком теплового эффекта.



где  - плотность реакционной смеси,

ср – теплоемкость реакционной смеси.

Н-р:

Следующая составляющая в уравнении теплового баланса гидродинамическая Тгидр, характеризует каким образом изменяется температура в потоке в зависимости от скорости перемешивания потока и конструкционных особенностей аппарата, в котором происходит процесс.

1). Модель идеальное смешение.

Гидродинамическая составляющая описывается следующим уравнением:

;  ; где Т0 – температура потока на входе в аппарат, Т – температура на выходе из аппарата

2). Модель идеальное вытеснение.

Гидродинамическая составляющая описывается следующим уравнением:

.

3). Модель диффузионное однопараметрическое вытеснение.

Гидродинамическая составляющая описывается следующим уравнением:

,где l – продольная теплопроводность турбулентного потока

4).Модель диффузионное двухпараметрическое вытеснение.

Гидродинамическая составляющая описывается следующим уравнением:

R – поперечная теплопроводность

5). Ячеечная модель.

Гидродинамическая модель:

Теплообмен -  т то.

Учёт стохастической составляющей модели теплообменной аппаратуры позволяет найти распределение температур по длине поверхности теплообмена. Обычно расчёт теплообменной аппаратуры выполняется в следующей последовательности:

  1. Составляется тепловой баланс всех потоков приводящих и отводящих тепло Qприх.=Qрасх.

Qпр.=G*Cр*(Тнач - Ткон)

G-количество теплоносителя , Cр- теплоноситель

Тначкон -начальная и конечная температура теплоносителя.

2). Определяется поверхность теплообмена

F=Qт./k tср.

Анализ процессов, связанных с отводом тепла и теплообменом базируется на исследовании материальных моделей этих процессов, представляющих собой определенные варианты уравнения теплового баланса.

Идеальное смешение.

Модель основана на предположении о полном смешении теплоносителя, поэтому его температура будет постоянной по длине теплообменника.

где К – коэффициент теплопередачи,

F –поверхность теплопередачи,

Т1 –температура потока в аппарате,

Т2 – температура теплоносителя,

Vr – объем аппарата.

Знак «+» - тепло поступает в систему, знак «-» - отвод тепла из системы

Идеальное вытеснение.

В основе модели лежат допущения о постоянстве температуры в поперечном сечении и отсутствии продольного перемешивания.

,

где dR- диаметр трубы теплообменника.

В зависимости от тепловых режимов все реакторы делятся на:

  • изотермические,

  • адиабатические ,

  • политропные.

В изотермических для поддержания постоянной температуры необходимо подводить или отводить тепло. Его количество соответствует суммарному тепловому эффекту всех реакций протекающих в системе. Так как в таком реакторе температура постоянна, то уравнения теплового баланса нет.

Т= const.

Однако эти реактора сравнительно редко используются в крупномасштабных производствах из-за высокой стоимости оборудования для съёма или подвода тепла.

Реактор называется адиабатическим, если в системе выделяемое в результате химической реакции тепло полностью идёт на изменение температуры при этом теплообмен с окружающей средой полностью отсутствует. В структуре теплового баланса отсутствует третья составляющая Tто=0.

В политропном реакторе изменение температурного режима в системе происходит и за счёт химической реакции и за счёт теплообмена с окружающей средой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]