- •Лучевые симптомы поражения сердца
- •Определение и состав лучевой диагностики
- •Лучевая картина поражений сердца
- •Митральные пороки
- •Аортальные пороки
- •Врожденные пороки
- •Перикардиты
- •Характеристика компьютерных томограмм, шкала Хаусфилда
- •Лучевые симптомы поражений сосудов.
- •Виды излучений,применяемых в лучевой диагностике
- •Методика «усиления» при проведении кт.
- •Открытие и основные свойства рентгеновского излучения
- •Лучевая анатомия и физиология пищевода, желудка и кишечника.
- •Открытие и определение естественной и искусственной радиоактивности
- •Лучевые симптомы заболеваний желудочно-кишечного тракта.
- •Устройство и оборудование кабинетов мрт.
- •Лучевая картина рака желудка.
- •Основные величины клинической дозиметрии
- •Показания и противопоказания к мрт.
- •Лучевые симптомы острых заболеваний и повреждений брюшной полости.
- •Регламентация лучевых исследований.Пределы доз.
- •Лучевое исследование и лучевая анатомия печени и желчных путей.
- •Принципы и способы защиты от ионизирующих излучений
- •Устройство ультразвукого диагностического аппарата.
- •Лучевая картина поражений печени и поджелудочной железы.
- •Лучевая семиотика поражений поджелудочной железы
- •Лучевая анатомия скелета.
- •Принципы получения рентгеновского изображения
- •Принцип сонографии и характеристика сонограммы
- •Определение доплерографии.
- •Лучевые симптомы поражений скелета.
- •Определение и принципы флюорографии
- •Лучевая картина травм костей и суставов.
- •Лучевая анатомия легких
- •Принципы и методы искусственного контрастирования органов
- •Лучевые симптомы воспалительных заболеваний костей.
- •Общие принципы радионуклидной диагностики
- •Лучевые симптомы заболеваний суставов.
- •Лучевые симптомы воспалительных заболеваний легких
- •Опухоли костей
- •Устройство отделений радионуклидной диагностики. Гамма-камеры.
- •Лучевые симптомы заболеваний органов средостения.
- •Лучевые симптомы мочекаменной болезни.
- •Основные методики лучевого исследования щитовидной железы.
- •Радиоиммунологический анализ in vitro
- •Лучевая анатомия сердца
- •Лучевая диагностика заболеваний надпочечников и паращитовидных желез.
- •Определение и принципы томографии
Устройство и оборудование кабинетов мрт.
Система для МРТ состоит из сильного магнита, создающего статическое магнитное поле. Магнит полый, в нем имеется туннель, в котором располагается пациент. Стол для пациента имеет автоматическую систему управления движением в продольном и вертикальном направлениях. Для радиоволнового возбуждения ядер водорода дополнительно устанавливают высокочастотную катушку, которая одновременно служит для приема сигнала релаксации. С помощью специальных градиентных катушек накладывается дополнительное магнитное поле, которое служит для кодирования МР-сигнал от пациента, в частности оно задает уровень и толщину выделяемого слоя. При воздействии радиочастотных импульсов на процессирующие в магнитном поле протоны происходят их резонансное возбуждение и поглощение энергии. После окончания импульса происходит релаксация протонов: они возвращаются в исходное положение, что сопровождается выделением энергии в виде МР-сигнала. Этот сигнал подается на ЭВМ для анализа. МР-установки включают в себя мощные высокопроизводительные компьютеры. Добавим, что к размещению высокопольного МР-томографа в лечебном учреждении предъявляются очень строгие требования. Необходимы отдельные помещения, тщательно экранированные от внешних магнитных и радиочастотных полей. Обычно процедурная комната, где находится МР-томограф, заключена в металлическую сетчатую клетку (клетка Фарадея), поверх которой нанесен отделочный материал (пола, потолка, стен).
Лучевая картина язвенной болезни желудка и двенадцатиперстной кишки.
Язва желудка
Рентгенологическое исследование выявляет прямые (морфологические) и косвенные (функциональные) признаки.
Прямые рентгенологические признаки язвы желудка - это симптом «ниши» и рубцово-язвенная деформация.
Ниша - рентгенологическое отображение язвенного дефекта в стенке полого органа и краевого вала вокруг. Обнаруживается в виде выступа на контуре (контур-ниша) или контрастного пятна на фоне рельефа слизистой оболочки
(рельеф-ниша). Большая ниша может иметь трехслойную структуру (барий, жидкость, газ). Контурная ниша обычно геометрически правильна, конусовидна. Контуры ее четкие, ровные, вал симметричен. В краеобразующем положении ниша выступает за контур желудка и отделена от него узкой полоской просветления - линией Хэмптона. Рельеф-ниша округлой формы, с гладкими, ровными краями. Она окружена воспалительным валом, к которому конвергируют складки слизистой оболочки
Язва луковицы двенадцатиперстной кишки
Рентгенологическое исследование: депо бариевой массы округлой формы, или симптом «ниши» (рис. 10.59); рубцово-язвен-ная деформация в виде выпрямления или втяжения контуров луковицы двенадцати-
перстной кишки, расширения карманов, сужения; выражен отек складок слизистой оболочки с их конвергенцией к язве, определяются вал инфильтрации вокруг ниши, сопутствующая гипермоторная дискинезия двенадцатиперстной кишки.
Билет 8.
Основные задачи и методы клинической дозиметрии
Дозиметрия - область прикладной физики, в которой изучаются физические величины, характеризующие действие ионизирующих излучении на объекты живой и неживой природы, в частности дозы излучения, а также методы и приборы для измерения этих величин.
Методы дозиметрии:
Биологические методы
Биологическое действие излучения является основой биологической дозиметрии и используется главным образом для установления ОБЭ — относительной биологической эффективности различных видов излучения. Биологические методы дозиметрии базируются на определении морфологических и функциональных изменений, возникающих в организме под влиянием облучения. Величину дозы оценивают по уровню летальности животных, изменению окраски кожи, выпадению волос, появлению или увеличению содержания некоторых веществ в моче, изменению количества кровяных клеток, т.е. состава крови и др. Биологические методы не очень точны.
Физические методы
Физические методы дозиметрии основаны на оценке степени ионизации вещества под влиянием ионизирующих излучений, изменения его электропроводности, характера свечения и др. |
|
Ионизационный метод
Ионизационный метод основан на способности ионизирующего излучения вызывать ионизацию среды. Если взять какое-либо непроводящее электрический ток вещество и поместить его в поле действия ионизирующего излучения, то при взаимодействии излучения с веществом часть энергии передается атомам и молекулам этого вещества и расходуется на их ионизацию. В веществе появляются положительно и отрицательно заряженные ионы. При отсутствии электрического поля ионы рекомбинируют между собой и в результате в веществе устанавливается равновесная концентрация ионных пар (равенство скоростей ионизации и рекомбинации при постоянной интенсивности излучения).
Люминисцентный метод
Сущность метода заключается в том, что в некоторых веществах (люминофорах) образованные под действием ионизирующего излучения носители заряда (электроны и дырки) локализуются в центрах захвата, благодаря чему происходит накопление поглощенной энергии, которая может быть затем освобождена при дополнительном внешнем воздействии (возбуждении).
Клиническая дозиметрия - раздел дозиметрии ионизирущего излучения, являющийся неотъемлемой частью лучевой терапии. Основная задача клинической дозиметрии состоит в выборе и обосновании средств облучения, обеспечивающих оптимальное пространственно-временное распределение поглощенной энергии излучения в теле облучаемого больного и количественное описание этого распределения. Клиническая дозиметрия использует расчетные и экспериментальные методики. Расчетные методы основаны на уже известных физических законах взаимодействия различных видов излучения с веществом. С помощью экспериментальных методов моделируют лечебные ситуации с измерениями в тканеэквивалентных фантомах.
Задачами клинической дозиметрии являются: - измерение радиационных характеристик терапевтических пучков излучения; - измерение радиационных полей и поглощенных доз в фантомах; - прямые измерения радиационных полей и поглощенных доз на больных; - измерение радиационных полей рассеянного излучения в каньонах с терапевтическими установками (в целях радиационной безопасности пациентов и персонала); - проведение абсолютной калибровки детекторов для клинической дозиметрии; - проведение экспериментальных исследований новых терапевтических методик облучения.
Характеристика МР-томограммы. Характер Μ Р-изображений определяется тремя факторами: плотностью протонов (т.е. концентрацией ядер водорода), временем релаксации Τι (спин-решетчатой) и поперечной релаксации Τι (спин-спиновой). При этом основной вклад в создание изображения вносит анализ времени релаксации, а не протонной плотности. Так, серое и белое вещества головного мозга по концентрации воды различаются всего на 10 %, в то время как по продолжительности релаксации протонов в них — в 1,5 раза. Существует несколько способов получения МР-томограмм, различающихся порядком и характером генерации радиочастотных импульсов, методами компьютерного анализа МР-сигналов. Наибольшее распространение получили два способа. При использовании одного из них анализируют главным образом время релаксации Τι (Τ,-взвешенное изображение). Различные ткани (серое и белое вещества головного мозга, цереброспинальная жидкость, опухолевая ткань, хрящ, мышцы и т.д.) имеют в своем составе протоны с разным временем релаксации Т,. От продолжительности Т, зависит величина МР-сигнала: чем короче Τι, тем сильнее МР-сигнал и светлее данное место изображения на дисплее. Жировая ткань на МР-томограммах белая, менее светлое изображение дают головной и спинной мозг, плотные внутренние органы, сосудистые стенки и мышцы. Воздух, кости, кальцификаты практически не дают МР-сигнала, поэтому их (ШораженИя"черного цвета. Т, мозговой ткани также неоднородное: белого и серого вещества 'шчо""разное. Τι опухолевой ткани отличается от Τι одноименной нормальной ткани. Указанные различия во времени релаксации Т, создают предпосылки для визуализации нормальных и измененных тканей на МР-томограммах. При другом способе МРТ интенсивность ответного сигнала зависит от продолжительности Т; (Т2-взвешенное изображение): чем короче Тг, тем слабее сигнал и, следовательно, ниже яркость свечения экрана дисплея При МРТ можно применять искусственное контрастирование тканей. С этой целью используют химические вещества, обладающие магнитными свойствами и содержащие ядра с нечетным числом протонов и нейтронов, например соединения фтора, или же парамагнетики, которые изменяют время релаксации воды и тем самым усиливают контрастность изображения на МР-томограммах. Одним из наиболее распространенных контрастных веществ, используемых в МРТ, является соединение гадолиния ~ Gd~DTPA.
