- •Содержание
- •Кинематическая цепь…………………………………………………...16 Кинематическая схема механизма…………………………………….17
- •Предмет и задачи курса «Механика автоматических устройств»
- •Основные термины и определения, используемые в робототехнике и манипуляторостроении
- •Классификация промышленных роботов
- •Классификация промышленных роботов
- •Классы точности промышленных роботов
- •Иерархия взаимодействия человека с роботом
- •Некоторые сведения из истории
- •Структура и кинематика механизмов Основные понятия и определения
- •Кинематические пары
- •Кинематическая цепь
- •Условные обозначения кинематических пар
- •Кинематическая схема механизма
- •Кинематическое соединение
- •Кинематические соединения
- •Степени свободы механизма
- •Методы аналитического отображения структуры механизмов
- •Отображение структуры в форме конечных множеств
- •Отображение структуры в форме отношений
- •Отображение структуры в форме матриц
- •Отображение структуры в форме числовой последовательности
- •Структурные характеристики механизмов
- •Порядок структуры
- •Тип кинематической цепи
- •Род кинематической цепи
- •Плоские и пространственные цепи механизмов
- •Число измерений структуры
- •Сложность структуры
- •Структурная значимость кинематической пары
- •Кинематические характеристики манипуляторов
- •Рабочий объем манипулятора
- •Рабочая зона манипулятора
- •Маневренность манипулятора
- •Скорость линейных перемещений звеньев.
- •Скорость угловых перемещений
- •Точность манипуляторов
- •Величина и коэффициент сервиса
- •Определение зоны обслуживания, величины и коэффициента сервиса манипуляторов
- •Общие сведения о системах координат
- •Кинематический анализ манипуляторов
- •Кинематический анализ манипуляторов методом проекций
- •Кинематический анализ манипуляторов методом преобразования координат Некоторые сведения о системах координат
- •Связь между прямоугольными, цилиндрическими и сферическими
- •Некоторые сведения из алгебры матриц
- •Задачи кинематического расчёта
- •Условия выбора систем координат
- •Преобразование прямоугольных координат
- •Элементарные преобразования координат
- •Совмещение двух координатных систем, произвольно расположенных в пространстве
- •Пример кинематического анализа манипулятора «Маскот-1»
- •Кинематический анализ манипулятора промышленного робота
- •Динамика манипуляционных устройств
- •Силовой анализ механизмов Задачи силового анализа механизмов
- •Силы инерции звеньев плоских механизмов
- •Силы инерции звеньев пространственных механизмов
- •Условие статической определимости кинематической цепи
- •Силовой анализ с учетом трения
- •Определение реакций опор с учётом сил трения
- •Уравнения движения механизмов Характеристики сил, действующих на звенья
- •Уравнения движения механизма в форме интеграла энергии
- •Кинетическая энергия механизма
- •Приведение сил и масс в механизмах
- •Дифференциальное уравнение движения механизма
- •Режимы движения механизма
- •Уравнения движения механизма
- •С оставление уравнений движения
- •Определение усилий приводов манипулятора при реализации движения объекта по заданной траектории
- •Определение сил и моментов, обеспечивающих программное движение манипулятора
- •Кинетостатический метод составления уравнений движения
- •Расчет манипуляторов промышленных роботов на жесткость и точность позиционирования
- •Конструктивные и расчетные схемы
- •Уравнения деформации конструкции
- •Влияние зазоров и контактных деформаций в опорах на погрешность позиционирования промышленных роботов
- •Влияния расстояний между опорами на смещение руки робота
- •Литература.
- •Раздел 1. Структурный анализ и синтез автоматических устройств
- •Раздел 2. Кинематика механизмов автоматических устройств
- •Раздел 3. Динамика механизмов автоматических устройств
- •Раздел 4. Точность автоматических устройств
Режимы движения механизма
В механизмах с одной степенью свободы различают три режима движения: разбег, установившееся движение и выбег. Установившимся движением механизма называется движение механизма с одной степенью свободы, при котором его кинетическая энергия и обобщенная скорость (производная обобщенной координаты по времени) являются периодическими функциями времени. Минимальный промежуток времени, в начале и в конце которого повторяются значения кинетической энергии и обобщенной скорости механизма, называется временем цикла установившегося движения. Режим движения механизма от начала движения до установившегося движения называется разбегом, а от установившегося движения до конца движения – выбегом. Режимы разбега и выбега, а также режимы перехода от установившегося движения с одной средней обобщенной скоростью к движению с другой средней скоростью называются переходными режимами.
Уравнения движения механизма
Для механизмов с несколькими степенями свободы при голономных связях (все геометрические связи и те дифференциальные связи, уравнения которых могут быть проинтегрированы) уравнения движения составляют в форме уравнений Лагранжа второго рода:
где Т – кинетическая энергия механизма (системы);
s – число обобщенных координат, которое совпадает с числом степеней свободы;
-
обобщенные координаты;
-
обобщенные скорости;
-
обобщенные силы, каждая из которых есть
скалярная величина, равная отношению
суммы возможных работ сил, приложенных
к механической системе, при изменении
только данной обобщенной координаты,
к вариации этой координаты. Для обобщенной
координаты, имеющей размерность длины,
соответствующая ей обобщенная сила
имеет размерность силы, а для обобщенной
координаты, выраженной в радианах –
размерность момента сил.
Обобщенную силу, имеющую размерность момента сил, называют обобщенным моментом сил. В механизмах с одной степенью свободы обобщенная сила совпадает с приведенной силой, а обобщенный момент сил – с приведенным моментом пар сил.
Обобщенные силы определяются из выражения
,
где
- проекции внешних сил
на координатные оси x,
y,
z;
xj, yj, zj - проекции возможных перемещений точек приложения этих сил на оси x, y, z, равные вариациям координат этих точек.
Для функции, зависящей от времени t и аргументов xi, вариацией называется изменение функции при бесконечно малых изменениях аргументов xi и фиксированном значении времени t.
Составление уравнений движения рассмотрим на примере манипулятора с числом степеней свободы W=7 (рис. 34).
Полагаем,
что внешние силы
,
действующие на звенья 1, 2, 3 дают пары с
моментами
.
За обобщенные координаты принимаем
углы поворота звеньев
и перемещение
.
Тогда уравнения движения манипулятора
запишутся:
Где
,
,
- приведенные моменты сил относительно
осей неподвижной системы координат.
Кинетическая энергия звеньев манипулятора при условии, что центробежные моменты инерции обратятся в нуль:
где
- моменты инерции звеньев относительно
осей, проходящих через центры масс
звеньев;
-
проекции на координатные оси мгновенной
угловой скорости звеньев при сферическом
движении вокруг центра масс.
Для
нахождения уравнения движения манипулятора
необходимо осуществить дифференцирование
выражения кинетической энергии по
переменным
,
а затем по времени t.
