Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metodich_po_sopromatu_1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.24 Mб
Скачать

Схемы к задаче 3

Схемы к задаче 3

Таблица 1.3

Вариант

Усилия

Длины участков

Р, кН

q,кН/м

l1, м

l2, м

l3, м

1

27

12

1

2

0,5

2

35

24

1,2

1,9

0,8

3

53

46

1,3

1,8

1

4

29

10

1,4

1,7

1,1

5

37

22

1,5

1,2

1,2

6

45

32

1,6

1,4

2

7

10

30

1,7

1

1,8

8

15

18

1,8

1,1

1,5

9

25

20

1,9

1,2

1,2

10

50

44

2

0,8

1

Пример решения задачи 3

Для ступенчатого бруса (см. рис. 1.5а) построить эпюры продольных сил N, нормальных напряжений и перемещений ; подобрать величину площади поперечных сечений всех участков бруса методом допускаемых нагрузок если Р1=3Р; Р2=2Р.

Решение

Задача один раз статически неопределима в силу плоской системы сил, действующих по одной прямой, для которой как известно можно составить только одно уравнение равновесия:

,

в котором два неизвестных: и .

Отбросим правую опору, заменив её действие на брус реакцией .

Перемещение сечения в точке В равно нулю, т.к. это сечение жёстко заделано. Используя принцип независимости действия сил, получим уравнение совместности деформаций:

Распишем эти деформации по закону Гука:

,

отсюда, после сокращения на а и EF, кН.

Рис. 1.5 Расчётная схема и эпюры для примера решения задачи 3

В соответствии с расчётной схемой рис. 1.5б аналитические зависимости N, и будут следующими:

Участок 1

кН ; ; .

Подставим в уравнение для перемещения два крайних значения , после подстановки будем иметь:

.

Участок 2

кН; ; .

Подставляя пределы получим:

.

Участок 3

кН; ; .

Подставляя пределы получим:

.

На основании данных аналитических зависимостей строим эпюры N, и (рис. 1.5 в, г, д).

Построение эпюры перемещений может служить проверкой правильности решения задачи. Перемещение на участке 1 при z1=0 равно нулю, перемещение на участке 3 при z=a также должно равняться нулю, т.к. эти два сечения соответствуют жёсткому закреплению бруса, перемещения которых невозможны.

2. На эпюре нормальных напряжений найдём максимальное напряжение: .

Для определения площади поперечного сечения воспользуемся условием прочности по нормальным напряжениям:

.

Приравняв максимальное нормальное напряжение к допускаемому, определим площадь поперечного сечения F:

.

Таким образом, на участке 1 площадь поперечного сечения должна быть , а на участке 2 в два раза больше, т.е. .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]