Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция_04_РТЦ_160905(ЗО)_web.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.21 Mб
Скачать

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

ИРКУТСКИЙ ФИЛИАЛ

КАФЕДРА АРЭО

ЛЕКЦИЯ № 4

по дисциплине

Радиотехнические цепи и сигналы

для студентов специальности 160905-ЗО

Раздел 4. Преобразование сигналов в нелинейных радиотехнических цепях

Иркутск, 2013 г.

1. Нелинейные элементы и их характеристики. Способы аппроксимации характеристик нелинейных элементов

В общем случае нелинейная цепь описывается оператором преобразования Wнц:

uвых(t) = Wнц[Uвх(t),t], (1.1)

для которого свойство линейности не выполняется. В состав такой цепи входят один или несколько нелинейных элементов (НЭ). Различают резистивные и реактивные НЭ. В качестве резистивных НЭ выступают транзисторы, полупроводниковые диоды, электронные лампы. Примером реактивного НЭ является варикап.

При анализе НЭ предполагается, что переходные процессы в НЭ заканчиваются практически с окончанием изменения входного сигнала, т.е. НЭ является безынерционным.

В подавляющем большинстве задач радиотехники рассматриваются резистивные безынерционные НЭ. В таких элементах в качестве входного сигнала выступает напряжение, а в качестве выходного – ток, протекающий по элементу. На Рис.1.1 показаны: нелинейный двухполюсник – полупроводниковый диод и четырехполюсник, которым может быть представлен транзистор. Основной характеристикой НЭ является его вольт-амперная характеристика (ВАХ), т.е. зависимость тока, протекающего через НЭ, от приложенного к нему напряжения:

Другими характеристиками НЭ являются (Рис 1.2):

– статическое сопротивление или сопротивление НЭ по постоянному току:

, (1.2)

– статическая крутизна:

, (1.3)

– дифференциальное сопротивление:

, (1.4)

– дифференциальная крутизна:

. (1.5)

Статическая крутизна пропорциональна тангенсу угла α, а динамическая тангенсу угла β – угла наклона касательной ВАХ в рабочей точке.

Замена истинной (реальной) ВАХ приближенно представляющей функцией называется аппроксимацией характеристики.

Степенная аппроксимация – представление ВАХ в виде ряда Тейлора в окрестности рабочей точки (I0, U0):

i=f(u)=a0+a1(u-U0)+a2(u-U0)2+… (1.6)

Кусочно-линейная аппроксимация – представление ВАХ отрезками прямых с различными наклонами. На практике ограничиваются двумя отрезками:

(1.7)

Здесь – напряжение начала характеристики; – крутизна наклона характеристики. Аппроксимации (1.6) и (1.7) показаны на Рис. 1.3.

2. Анализ преобразования гармонического сигнала нэ при степенной аппроксимации вах

На Рис. 1.4 изображены ВАХ нелинейного элемента, график входного сигнала:

u(t)=U0+Umcosω0t, (1.8)

и график выходного сигнала (тока, протекающего через НЭ). Форма тока существенно отличается от формы напряжения приложенного к нему. Воспользуемся степенной аппроксимацией ВАХ, ограничившись слагаемым третьей степени. Подставляя (1.8) в (1.6) и используя тригонометрические соотношения:

,

.

получим выражение для тока, протекающего через нелинейный элемент:

i(t)=I0+I1cosω0t+I2cos2ω0t+ I3cos3ω0t+…, (1.9)

где ; ; ; (1.10)

Ток, протекающий через НЭ, содержит постоянную составляющую и совокупность гармоник, количество которых определяется наибольшей степенью аппроксимирующего полинома. При этом амплитуды четных гармоник определяются четными коэффициентами аппроксимирующего полинома, а нечетных гармоник – нечетными коэффициентами.

Анализ преобразования суммы двух гармонических сигналов при степенной аппроксимации ВАХ полиномом второй степени:

i=a0+a1(u-U0)+a2(u-U0)2. (1.11)

Входным сигналом в этом случае является колебание:

u(t)=U0+Um1cosω1t+Um2cosω2t. (1.12)

Подстановка (1.12) в (1.11) и использование ранее приведенных тригонометрических соотношений и соотношения:

,

дает выражение для тока, протекающего через НЭ:

i(t)=I0+I11cosω1t+I12cosω2t+I21cos2ω1t+I22cos2ω2t+

Ipcos(ω1 – ω2)t+ Iccos(ω1 + ω2)t, (1.13)

где: ]; ; ; ; ; ;

. (1.14)

В этом случае ток, протекающий через НЭ содержит постоянную составляющую , гармоники кратных частот ω1 , ω2 , 2ω1 , 2ω2 с амплитудами соответственно , , , и гармоники комбинационных частот: разностной частоты ωp= ω1 ω2 с амплитудой и суммарной частоты ωс= ω1 + ω2 с амплитудой .