- •Тема: Умовивід
- •1) Умовивід як форма мислення. Види умовиводів.
- •Перетворення судження
- •Обернення судження
- •Протиставлення предикатові
- •3. Простий категоричний силогізм. Правила силогізму
- •Правила термінів і засновків силогізму
- •Правила засновків силогізму
- •Фігури та модуси силогізму
- •1. Більший засновок є загальним судженням (а, або е).
- •2. Менший засновок є стверджувальним судженням (а, або і).
- •1. Більший засновок — загальне судження (а, е).
- •2. Один із засновків - заперечне судження (е, о).
- •1. Менший засновок - стверджувальне судження (а, і).
- •2. Висновок — часткове судження (і, о).
- •1. Якщо більший засновок стверджувальне судження (а, і), то менший засновок повинен бути загальним судженням (а, е).
- •2. Якщо один із засновків заперечне судження (е), то більший засновок повинен бути загальним судженням (а, е).
- •4) Умовиводи логіки висловлювань
- •Умовні умовиводи Суто умовні умовиводи
- •Умовно-категоричний умовивід
- •1. Modus ponens або «стверджувальний модус».
- •2. «Modus tollens, або «заперечувальний модус».
- •Суто розділові
- •Умовно-розділові умовиводи.
Протиставлення предикатові
Протиставлення предикатові в судженні – такий безпосередній умовивід у якому в новому судженні (тобто висновку) суб'єктом стає поняття, яке суперечить предикату вихідного судження, а предикатом стає суб'єкт вихідного судження. Причому, зв'язка змінюється на протилежну. При протиставленні предикатові в судженні змінюється якість і може змінюватися кількість вихідного судження.
Протиставлення складніша операція за попередні, оскільки щоб здійснити протиставлення до предиката, треба виконати перетворення судження, а потім - обернення.
Наприклад, Всі леви є хижаками – отже, жоден не хижак не є левом (всі S є Р – жоден не-Р не є S)
спочатку замість Р ми взяли не-Р
міняємо місцями S і не-Р
зв’язку міняємо на протилежну (є на не є)
Розглянемо, як здійснюється протиставлення предикату в усіх видах простих суджень А, Е, І, О
Загальностверджувальне судження: Всі S є Р – жоден не-Р не є S
Всі метали є електропровідними – Жоден не електропровідник не є металом
Загальнозаперечне судження. Жоден S не є Р – Деякі не-Р є S
Жоден студент нашої групи не є журналістом – Деякі не журналісти є студентами нашої групи
Частковозаперечне судження. Деякі S не є Р – Деякі не-Р є S
Деякі лікарі не є хірургами. – Деякі не хірурги є лікарями.
Частковостверджувальне не підлягає протиставленню до предиката, бо після перетворення стає частковозаперечним, а такі судження не обертаються. (але інколи цю операцію все ж можна здійснити, бо деякі частково заперечні судження обертаються. Наприклад, Деякі люди вміють плавати, дехто з тих, хто не вміє плавати не є людьми – Н.В.)
Крім того, ще виділяють безпосередні умовиводи за логічним квадратом, коли з істинності чи хибності одного судження ми робимо висновок про істинність чи хибність іншого.
3. Простий категоричний силогізм. Правила силогізму
Отже, однією з форм дедуктивного умовиводу є опосередковані дедуктивні умовиводи – силогізми ( в перекладі з грецької - міркувати, робити висновок)
Його називають простим, бо він має два засновки. Силогізм, який складається з більш, ніж двох засновків, називається складним. Оскільки засновками і висновком його є категоричні судження, то його називають категоричним.
Простим категоричним силогізмом називається такий дедуктивний умовивід, у якому з двох простих категоричних суджень (засновків) за певними правилами виводиться нове категоричне судження (висновок).
Структура простого категоричного силогізму. Поняття, які входять у засновки та висновок, звуться термінами. Суб’єкт висновку зветься меншим терміном, предикат – більшим терміном. Термін, який не входить у висновок, називається середнім терміном, його позначають літерою М. Менший і більший терміни позначають відповідно S і P. Більший чи менший залежить від того, який обсяг їм властивий у загальному судженні. Середній термін М виконує роль сполучної ланки між більшим і меншим термінами, завдяки чому стає можливим із двох суджень-засновків вивести третє судження (висновок), котре є новим знанням.
Напр.:
“Всі рослини (М) є організми (Р)”.
“Сосни (S) є рослини (М)”. “Сосни (S) є організми (Р)”.
Інколи ще дають таке визначення ПКС– це силогізм, у висновку якого встановлено зв’язок між двома поняттями (S і Р) на основі знання їхнього відношення до третього поняття (до середнього терміна М).
Висновок у категоричному силогізмі виводиться на основі аксіоми силогізму : все, що стверджується чи заперечується про весь клас предметів, те стверджується (чи заперечується) про частину цього класу.
Так, в силогізмі:
Всі громадяни України (М) мають політичні права (Р).
Симоненко (S) є громадянином України (М).
Симоненко (S) має політичні права (Р).
Все, що стверджується відносно всіх громадян України, з необхідністю стверджується і про кожного громадянина України.
В силогізмі:
Ніхто не притягується до кримінальної відповідальності (Р) без рішення суду (М).
Відносно Симоненка (S) такого рішення немає (М).
Симоненко (S) не притягується до кримінальної відповідальності (Р).
Все, що заперечується відносно всіх неосуджених громадян, заперечується і відносно кожного неосудженого громадянина.
