- •Лекция: «Ядерная энергетика» Введение
- •Основная научная информация
- •История ядерной энергетики
- •Атомная энергетика по странам
- •Атомная энергетика России
- •Действующие аэс России
- •Международные проекты России в атомной энергетике
- •Безопасность атомных электростанций
- •Ядерные аварии
- •Наиболее известные ядерные аварии
- •Термоядерный синтез – новые возможности
- •Вопросы для самопроверки
Лекция: «Ядерная энергетика» Введение
Ядерная энергетика — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.
Ядерная энергия – это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
Основная научная информация
Несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное "солнце" — ядро атома. Вокруг этого атомного "солнца" вращаются крохотные "планеты" — электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной — протонов и нейтронов (они имеют объединяющее название — нуклоны).
Электрон и протон — заряженные частицы, причём количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон — отрицательно. Нейтрон не несёт электрического заряда и вследствие этого имеет очень большую проницаемость. В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента зависит от количества протонов и нейтронов, заключённых в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1.
Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4. Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Может возникнуть вопрос: почему ядро атома не разваливается, ведь входящие в него протоны — электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой?
Объясняется это тем, что внутри ядра действуют ещё и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься. Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжёлых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объёма ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы — ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения или энергией связи.
Энергия связи – это энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре колеблется, в среднем, в пределах от 1 МэВ у лёгких ядер (дейтерий) до 8,6 МэВ, у ядер среднего веса (А≈100). У тяжёлых ядер (А≈200) удельная энергия связи нуклона меньше, чем у ядер среднего веса, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение лёгких ядер в более тяжёлые ядра даёт ещё больший энергетический выигрыш в расчёте на нуклон. Так, например, реакция соединения дейтерия и трития
1D²+1T³→2He4+0n1
сопровождается выделением энергии 17,6 МэВ, то есть 3,5 МэВ на нуклон.
Среди изотопов тяжёлых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого "толчка", например, простого попадания в ядро нейтрона (причём он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих "делящихся" изотопов позже научились получать искусственно. В природе же существует только один такой изотоп — это уран-235.
