Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
литосфера.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
147.97 Кб
Скачать

Ответы на вопросы к экзамену по геологии

1. Методы изучения строения Земли. Прямые и косвенные.

Все методы разделяются на:

-прямые — опираются на непосредственное изучение минералов и горных пород и их размещении в толщах Земли;

-косвенные — основаны на изучении физических и химических параметров минералов, пород и толщ с помощью приборов.

Прямыми методами мы можем изучить лишь верхнюю часть Земли, т.к. самая глубокая скважина (Кольская) достигла~12 км. О более глубоких частях можно судить по вулканическим извержениям.

Глубинное внутреннее строение Земли изучается косвенными методами, в основном комплексом геофизических методов. Рассмотрим основные из них.

1) Сейсмический метод (греч. сейсмос — трясение) — опирается на явление возникновения и распространения упругих колебаний (или сейсмических волн) в различных средах. Упругие колебания возникают в Земле при землетрясениях, падениях метеоритов или взрывах и начинают распространяться с разной скоростью от очага их возникновения (очага землетрясения) до поверхности Земли. Выделяют два типа сейсмических волн:

1- P-волны (самые быстрые), проходят через все среды — твердые и жидкие;

2- S-волны, более медленные и проходят только через твердые среды.

Сейсмические волны при землетрясениях возникают на глубинах от 10 км до 700 км. Скорость сейсмических волн зависит от упругих свойств и плотности горных пород, которые они пересекают. Достигая поверхности Земли, они как бы просвечивают ее и дают представление о той среде, которую пересекли. Изменение скоростей дает представление о неоднородности и расслоенности Земли. Кроме изменения скоростей, сейсмические волны испытывают преломление, проходя через неоднородные слои или отражение от поверхности, разделяющей слои.

2) Гравиметрический метод основан на изучении ускорения силы тяжести Dg, которое зависит не только от географической широты, но и от плотности вещества Земли. На основании изучения этого параметра установлена неоднородность в распределении плотности в разных частях Земли.

3) Магнитометрический метод — основан на изучении магнитных свойств вещества Земли. Многочисленные измерения показали, что различные горные породы отличаются друг от друга по магнитным свойствам. Это приводит к образованию участков с неоднородными магнитными свойствами, которые позволяют судить о строении Земли.

2. Понятие о минералах и горных породах, образование минералов в природе (магматические, посадочные, метаморфические).

Планета Земля состоит из минералов и горных пород. Οʜᴎ яв­ляются основой почв и определяют многие их свойства. По этой причине для почвоведения чрезвычайно важны знания о распространении, образовании минералов и горных пород, их свойствах и изменени­ях во времени. Минералогия — наука о минералах. Она изучает состав, свойства, структуры, и условиях образования минералов.

Минерал — это природное химическое соединение, реже —са­мородный элемент. Минералы бывают твердыми, жидкими и газообразными. Наибольшее распространение получили минералы, содержа­щие кислород, кремний и алюминий. Минералы бывают аморфные и кристаллические. В аморфных минералах элементарные частицы (атомы, ионы, молекулы) расположены беспорядочно, а в кристаллических они соединены закономерно в кристаллическую решетку.(Опал - аморфная разновидность кварца). Иногда при одинаковом химическом составе минерала кристаллическая решетка должна быть разной, при этом физические свойства минерала могут существенно меняться. Эта способность твердых веществ образовывать при одинаковом химическом составе иметь различные по строению кристаллические решетки принято называть полиморфизмом. Примером такого явления являются алмаз и графит, имеющие идентичный химический состав (чистый углерод), но различные по кристаллическому строению.

Горные породы – образования, состоящие из бесконечного числа зерен одного или нескольких минералов (мономинœеральные из одного минœерала: кварцит из кварца; полиминœеральные из нескольких: гранит из кварца, полевого шпата͵ слюды.). Из горной породы отдельные минералы можно извлечь механическим путем.

Минералы, наиболее часто встречаю­щиеся и образующие основу многих горных пород, называют поро­дообразующими. Минералы, образовавшиеся из компонентов магмы, называют первичными. В результате тектонических движений земной коры отдельные ее области в течение геологического времени поднима­ются и происходит горообразование. Первичные минералы, ока­завшись на дневной поверхности подвергаются воздействию воды, кислорода, диоксида углерода, живых организмов. Совер­шающиеся сложные химические процессы приводят к образова­нию новых минœералов, называемых вторичными.

Выделяют три группы процессов образования минералов и гор­ных пород.

1. Эндогенные. (внутренние). Οʜᴎ связаны с магматическими очагами, в основном приуроченными к внутренним слоям земной коры. Здесь господствуют высокие температуры и давление. Все эти процессы протекают при остывании магмы внутри Земли – без участия кислорода;

2. Экзогенные. (внешние) Для зоны экзогенных процессов характерны низкие температуры и низкое давление. В этой зоне различают несколько групп процессов образова­ния минералов, среди них крайне важно выделить выветривание. Под выветриванием понимают процессы изменения физи­ческого состояния и химического состава минералов и горных по­род под влиянием Н20, 02, С02, температурных колебаний, живых организмов (растительных и животных), талых и дождевых вод, разрушительной деятельности моря, рек, ветра, ледников и ледниковых вод. Различают виды выветривания: химическое, биологическое и физическое (механическое), кото­рые часто совершаются одновременно. В разных природных зонах и в разных экологических условиях те или иные виды выветрива­ния преобладают.

1) Процессы химического выветрива­ния приводят к образованию вторичных минералов в экзогенной зоне под влиянием абиотических (не живых) факторов: воды, ди­оксида углерода и кислорода воздуха. Наиболее распространенные реакции при химическом выветривании: растворение, окисление (химический процесс, при к-ром происходит соединение какого-н. тела с кислородом), гидролиз (химическая реакция разложения вещества водой), гидратация (присоединение молекул воды к молекулам или ионам), оглинивание (образование глинных минœералов). При химическом выветривании первичных минералов из каж­дого минерала часто образуется несколько вторичных. В процессе химичес­кого выветривания изменяется первоначальная окраска минера­лов. Необходимо отметить, что кварц наиболее стоек к химическо­му выветриванию, в связи с этим широко распространен в осадочных обломочных породах и в почвах. Пример, оподзоливание;

2) Биологическое выветривание - механическое разрушение и химическое изменение горных пород и минералов под действием живых организмов и продуктов их жизнедеятельности. Корни растений, лишайники, микроорга­низмы выделяют диоксид углерода и органические кислоты, раз­рушающие минералы и высвобождающие минеральные элементы питания. Под воздействием этих кис­лот на труднорастворимые минералы образуются легкораствори­мые в воде соединения, катионы или анионы которых легко усваи­ваются растениями и микроорганизмами;

3) Физическое (механическое) выветривание протекает под влиянием колебаний температуры, вследствие чего минералы, слагающие породы, испытывают попеременно то сжатие, то расширение. Это приводит к образованию трещин и в конечном итоге к разрушению пород.

Различают три генетичес­ких типа горных пород: магматические, осадочные и метаморфи­ческие.

1) Магматические (Изверженные) —первичные.Магматические образуются из остывающей магмы. Магма (греч.— месиво, густая мазь) представляет собой природный, чаще всœего силикатный, огненно-жидкий расплав, воз­никающий в коре или в верхней мантии и при остывании дающий магматические горные породы:

-Глубинные (интрузивные) —Образовавшие­ся при медленном остывании магмы в эндогенной зоне (граниты, сиениты). характерно яснокристаллическое строение;

-Излившиеся (эффузивные) (effusion – излияние лат.) — образовались при быст­рым охлаждением магмы на поверхности Земли при извержении вулканов. . строение сктрытнокристаллическое (базальт), стекловидное. (обсидиант), пористое (пемза) и др.

Магматические породы различаются также по химическому составу. Химическая классифиация магматических пород основывается на содержании в них SiO2. Породы различают: ультракислые, содержание оксида кремния >75% (пегматит); кислые, содержание оксида кремния 65-75% (гранит –липарит); средние, содержание оксида кремния 52-65% (сиенит, порфирит); основные породы содержат оксида кремния 45-52% (габбро, базальт, лабрадорит); ультраосновные, содержат оксида кремния < 45% (Дунит, перидотит, пироксенит).

2) Осадочные — вторичные, возникают из осадков, образующихся при выветривании. Осадки накапливаются в понижениях рельефа Земли (морские впадины, речные и межгорные долины, овраги, болота͵ озера). Осадки представлены илами различного состава, останками животных и растений, обломками горных пород и минералов различной формы и величины. После накопления осадочного материала в отрицательных формах рельефа они уплотняются, обезвоживаются, цементируются и превращаются в горные породы, такие как глины, песчаники, яшмы, известняки, доломиты, мергели и др. Их самыми характерными внешними признаками является наличие слоистой текстуры, остатков вымерших беспозвоночных животных и растений и сравнительно невысокая твердость. По условиям образования (генезису) все осадочные породы разделяются на :

-хемогенные, возникшие в результате различных химических реакций(карбонатные – известняки, доломиты: кремнистые – кремнистый туф; желœезистые – бурый желœезняк; фосфатные – фосфорит, а также марганцевые, галоидные, сернокислые).; глины и гипсы;

-обломочные - в результате физического выветривания (грубообломочные – глыбы. Щебень, дресва, валуны, галька, гравий, брекчия, конгломераты; песчаные породы; пылеватые – лессы, лессовидные суглинки, глинистые);

-биогенные - в результате жизнедеятельности растений и животных (яшмы, известняки - ракушняки, уголь и нефть).

Осадочные породы имеют для почвоведения особое значение. Так как на них образовались почвы они называются почвообразующими или материнскими. Большинство почвообразующих пород образовалось в последнее геологическое время – четвертичный период, и в связи с этим называются четвертичными. Более древние породы, залегающие под четвертичными, в почвоведении относят к коренным породам, но при выходе их на поверхность они и продукты их разрушения тоже становятся почвообразующими.

3) Метаморфические горные породы. Образуются метаморфические горные породы в глубинных зонах земной коры в процессе изменения (метаморфизма) магматических и осадочных горных пород под действием высокой температуры, давления и химически активных веществ (газов и паров), выделяющихся из магмы. Зону земной коры, где происходит метаморфический процесс, называют поясом (зоной) метаморфизации. Преобразование пород может происходить разными путями: а) на огромных площадях при погружении целых регионов земной коры в зоны высоких температур и давлений (региональный метаморфизм), б) при контакте пород с раскаленными интрузивными телами (контактовый метаморфизм) и в) под воздействием огромных давлений, возникающих в процессе горообразования (динамометаморфизм). Катакластический метаморфизм по своему существу является дислокационным. Этот тип метаморфизма приурочен к участкам развития дизъюнктивных нарушений — дислокаций — типа сбросов. При динамомстаморфизме образуются мощные зоны смятия, возникают сложные складки. Наиболее распространен региональный (глубинный) метаморфизм, проявляющийся на больших площадях в толще земной коры. В глубинных зонах складчатых областей региональный метаморфизм может сопровождаться переправлением ряда пород (ультраметаморфизм) с образованием смешанных горных пород — мигматитов. Особенно значительные изменения испытывают глинистые породы. Еще в процессе диагенеза глины уплотняются, обезвоживаются и превращаются в аргиллиты, отличающиеся от глин полной неразмокаемостью. В начальной стадии метаморфизма в условиях низких температур под воздействием тектонического давления аргиллиты претерпевают рассланцевание (динамометаморфизм) и превращаются в аргиллитовые сланцы. Изменения выражаются в появлении тонкосланцеватой текстуры. Дальнейшее усиление метаморфизма, связанное с повышением температуры, приводит к полной перекристаллизации глинистого вещества с образованием филлитов.

Классификация метаморфических пород основана на структурно-минеральных признаках и минеральном составе. В связи с этим различают породы: а) массивные (зернистые) — кварцит, мрамор и др.; б) сланцеватые — гнейс и кристаллические сланцы. Физико-механические свойства метаморфических горных пород во многом близки к магматическим, что обусловлено наличием у них жестких преимущественно кристаллизационных связей. Для большинства метаморфических пород характерна анизотропность свойств, обусловленная их сланцеватостью.

3. Гипотезы образования Земли. Химический состав Земли. Земная кора (определение, состав).

Мифология древних. Человек – существо пытливое. Издревле люди отличались от животных не только желанием выжить в суровом диком мире, но и попыткой понять его. Признавая тотальное превосходство сил природы над собой, люди стали обожествлять происходящие процессы. Чаще всего именно небожителям приписывается заслуга сотворения мира. Мифы о происхождении Земли в разных уголках планеты значительно отличались друг от друга. По представлениям древних египтян, она вылупилась из священного яйца, слепленного богом Хнумом из обычной глины. Согласно верованиям островных народов, землю выудили боги из океана.

Теория хаоса. Ближе всех к научной теории подошли древние греки. По их понятиям, рождение Земли произошло из первородного Хаоса, наполненного смесью из воды, земли, огня и воздуха. Это стыкуется с научными постулатами теории происхождения Земли. Гремучая смесь элементов хаотично вращалась, заполняя все сущее. Но в какой-то момент из недр первородного Хаоса родилась Земля – богиня Гея, и ее вечный спутник, Небо, – бог Уран. Совместными усилиями они наполнили безжизненные просторы разнообразием жизни. Похожий миф сформировался и в Китае. Хаос Хунь-тунь, наполненный пятью элементами – деревом, металлом, землей, огнем и водой – кружил в форме яйца по безграничной Вселенной, пока в нем не зародился бог Пань-Гу. Пробудившись, он обнаружил вокруг себя лишь безжизненную тьму. И этот факт его сильно опечалил. Собравшись с силами, божество Пань-Гу разломило скорлупу яйца-хаоса, высвободив два начала: Инь и Ян. Тяжелый Инь опустился вниз, сформировав землю, светлый и легкий Ян взмыл ввысь, образовав небо.

Классовая теория формирования Земли. Происхождение планет, и в частности Земли, современными учеными достаточно изучено. Но есть ряд принципиальных вопросов (например, откуда взялась вода), вызывающих жаркие споры. Поэтому наука о Вселенной развивается, каждое новое открытие становится кирпичиком в фундаменте гипотезы происхождения Земли. Знаменитый советский ученый Отто Юльевич Шмидт, больше известный по полярным исследованиям, сгруппировал все предложенные гипотезы и объединил их в три класса. К первому относятся теории, исходящие из постулата об образовании Солнца, планет, лун и комет из единого материала (туманности). Это известные гипотезы Войткевича, Лапласа, Канта, Фесенкова, недавно переработанные Рудником, Соботовичем и другими учеными. Второй класс объединяет представления, согласно которым планеты формировались непосредственно из вещества Солнца. Это гипотезы происхождения Земли ученых Джинса, Джеффриса, Мультона и Чемберлина, Бюффона и других. И, наконец, к третьему классу относятся теории, не объединяющие Солнце и планеты общностью происхождения. Наиболее известна гипотеза Шмидта

Гипотеза Канта. В 1755 году немецкий философ Кант происхождение Земли кратко описал следующим образом: первоначальная Вселенная состояла из неподвижных пылевидных частиц различной плотности. Силы гравитации привели их движение. Происходило налипание их друг на друга (эффект аккреции), в конечном итоге приведшее к образованию центрального раскаленного сгустка - Солнца. Дальнейшие столкновения частиц привели к вращению Солнца, а вместе с ним и пылевого облака. В последнем постепенно образовывались отдельные сгустки вещества – зародыши будущих планет, вокруг которых по подобной схеме сформировались спутники. Образованная таким путем Земля в начале своего существования представлялась холодной.

Концепция Лапласа. Французский астроном и математик П. Лаплас предложил несколько отличный вариант, объясняющий происхождение планеты Земля и других планет. Солнечная система, по его мнению, образовалась из раскаленной газовой туманности со сгустком частиц в центре. Она вращалась и сжималась под действием всемирного тяготения. При дальнейшем охлаждении скорость вращения туманности росла, по периферии от нее отслаивались кольца, которые распадались на прообразы будущих планет. Последние на начальной стадии представляли собой раскаленные газовые шары, которые постепенно охлаждались и затвердевали.

Теория Фесенкова. Указанное противоречие в 1960 попытался объяснить советский ученый Фесенков. Согласно его версии происхождения Земли, Солнце с планетами образовались в результате уплотнения гигантской туманности – «глобулы». Туманность обладала очень разреженной материей, составленной в основном из водорода, гелия и небольшого количества тяжелых элементов. Под действием силы гравитации в центральной части глобулы возникло звездообразное сгущение – Солнце. Оно быстро вращалось. В результате эволюции солнечного вещества в окружающую его газово-пылевую среду время от времени осуществлялись выбросы материи. Это приводило к потере Солнцем своей массы и передаче создаваемым планетам значительной части МКР. Формирование планет проходило путем аккреции вещества туманности.

Теории Мультона и Чемберлина. Американские исследователи астроном Мультон и геолог Чемберлин предложили схожие гипотезы происхождения Земли и Солнечной системы, согласно которым планеты образовались из вещества газовых веток спиралей, «вытянутых» из Солнца неизвестной звездой, которая прошла на достаточно близком расстоянии от него. Учеными было введено в космогонию понятие «планетезималь» – это сгустки, сконденсированные из газов первоначального вещества, которые стали эмбрионами планет и астероидов.

Суждения Джинса. Английский астрофизик Д. Джинс (1919) предположил, что при сближении с Солнцем другой звездой с последней оторвался сигарообразный выступ, который в дальнейшем распался на отдельные сгустки. Причем из средней утолщенной части «сигары» образовались крупные планеты, а по ее краям – мелкие.

Гипотеза Шмидта. В вопросах теории происхождения Земли оригинальную точку зрения в 1944 году высказал Шмидт. Это так называемая метеоритная гипотеза, впоследствии физико-математически обоснованная учениками известного ученого. Кстати, в гипотезе проблема образования Солнца не рассматривается. Согласно теории, Солнце на одной из стадий своего развития захватило (притянуло к себе) холодное газово-пылевое метеоритное облако. До этого оно владело очень малым МКР, облако же вращалось со значительной скоростью. В сильном гравитационном поле Солнца началась дифференциация метеоритного облака по массе, плотности и размерам. Часть метеоритного материала попала на светило, другая, в результате процессов аккреции, образовывала сгустки-зародыши планет и их спутников. В этой гипотезе происхождение и развитие Земли зависимо от воздействия «солнечного ветра» – давления солнечного излучения, которое отталкивало легкие газовые компоненты на периферию Солнечной системы. Образованная таким образом Земля была холодным телом. Дальнейший разогрев связывается с радиогенным теплом, гравитационной дифференциацией и другими источниками внутренней энергии планеты. Большим недостатком гипотезы исследователи считают очень низкую вероятность захвата Солнцем подобного метеоритного облака.

Предположения Рудника и Соботовича. История происхождения Земли до сих пор волнует ученых. Относительно недавно (в 1984 году) В. Рудник и Е. Соботович представили собственную версию происхождения планет и Солнца. Согласно их представлениям, инициатором процессов в газово-пылевой туманности мог послужить близкий взрыв сверхновой звезды. Дальнейшие события, по мнению исследователей, выглядели так:

-Под действием взрыва началось сжатие туманности и образование центрального сгустка - Солнца;

-От формирующегося Солнца МРК передавался планетам электромагнитным или турбулентно-конвективным путем;

-Стали образовываться гигантские кольца, напоминающие кольца Сатурна;

-В результате аккреции материала колец сначала появились планетезимали, впоследствии сформировавшиеся в современные планеты;

Вся эволюция проходила очень быстро – на протяжении около 600 млн лет.

Химический состав. Масса Земли приблизительно равна 5,9736·1024 кг. Общее число атомов, составляющих Землю, ≈ 1,3-1,4·1050. Она состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе область ядра, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %) и около 1 % других элементов. Примечательно, что углерода, являющегося основой жизни, в земной коре всего 0,1 %. Геохимик Франк Кларк вычислил, что земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породообразующие минералы земной коры практически полностью состоят из оксидов; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO2), глинозём (Al2O3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K2O) и оксид натрия (Na2O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

С глубиной химический состав Земли меняется, о чем свидетельствуют изменения плотности и упругих свойств среды, установленные при изучении скорости прохождения через земной шар сейсмических волн. Не вызывает сомнения, что в связи с увеличением плотности с глубиной в составе вещества Земли возрастает роль тяжёлых элементов (Fe, Mg, Cr, Ni, Co).

Непосредственная оценка химического состава недр Земли нам недоступна. Но решению этой проблемы помогает изучение метеоритов. Если опираться на предположение, что они являются обломками планет, можно провести известные аналогии между составом метеоритов и глубоких недр Земли. Сравнение данных химического состава железных метеоритов со средним химическим составом земной коры показывает, что в недрах Земли резко увеличивается содержание Fe при уменьшении содержания O, Si, Al.

Земная кора — внешняя твёрдая оболочка Земли (геосфера) , часть литосферы, толщиной от 5 км (под океаном) до 75 км (под материками) . Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см3.

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936). Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км. Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность. По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры. Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

4. Общие представления о строении Земли. Сейсмическая модель строения Земли. Строение Земли. Тектоносфера, астеносфера, литосфере.

а) В связи с тем, что земная поверхность осложнена глубокими впадинами (дно морей и океанов) и высокими горами на материках, эту истинную, присущую только Земле форму называют геоидом. Средний радиус Земли – 6371 км. Полярный и экваториальный радиусы неодинаковы (разница между ними составляет немногим более 21 км). На основании сейсмических данных выделяют внутренние геосферы, отделенные друг от друга поверхностями раздела, где скорости сейсмических волн изменяются. К ним относятся ядро, мантия и литосфера (земная кора). Внутренне ядро Земли имеет предположительный состав с большим содержанием железа. Плотность его колеблется от 9,9 до 11,0 г/см3. По современным представлениям температура составляет 68800 С. Внешнее ядро (толщина 2000м). Плотность 5,3-6,5 г/см3. В ее составе имеется кремний, железо, магний, никель. Нижняя мантия. Состоит из ультраосновных пород с плотностью 3,3-4,5 г/см3. Преобладает кремний и магний. Верхняя часть мантии очень активна, содержит расплавленные массы. Здесь зарождаются сейсмические и вулканические явления, горообразовательные процессы (толщина 800м).

Земная кора (литосфера) — твердая верхняя оболочка Земли. Ее мощность изменяется от 5—10 (12) км под водами океанов до 30-40 км и равнинных областях, 50-75 км в горных районах (максимум под Андами и Гималаями). Средняя плотность Земли по гравиметрическим данным составляет 5,52 г/см3. Плотность горных пород, слагающих земную кору, колеблется от 2,4-2,5 до 2,9-3,0 г/см3. Земная кора состоит из материкового и океанического типов. Материковый тип сложен тремя слоями. Верхний называется осадочным и представлен осадочными породами. Мощность их различна, изменяется от десятков метров до 10000м. Под толщей осадочного покрова находится гранитный слой. Он представлен кислыми магматическими породами (15-20 км). Под гранитным слоем располагается базальтовый слой, который достигает мощности 30 км. Состоит из пород основного состава (базальтов и габбро). Океанический тип сложен только осадочным и базальтовым слоями.

Большую роль в геологических процессах на Земле играют внешние оболочки Земли гидросфера, атмосфера и биосфера. Гидросфера это водная оболочка. Вода покрывает поверхность Земли на 70,8 %. Наибольшая глубина 11 км (Мариинская впадина в Тихом океане). Температура воды изменяется с глубиной. Самая высокая (+35,6 0 С) - в Персидском заливе, а наиболее низкая – в Северном ледовитом океане (-2,8 0 С). Содержание солей тоже различно. Соленость морской воды в среднем составляет 35 г/л. Гидросфера активно разрушает поверхностную часть литосферы, одновременно способствует накоплению мощной толщи осадков и создает запасы пресных вод. Атмосфера – газовая оболочка Земли состоит из смеси различных газов, водяных поров и пыли. Она имеет сложное строение и тесно связана с процессами, происходящими в литосфере и гидросфере. Их взаимодействиями занимается наука метеорология. Биосфера – сфера жизнедеятельности организмов, в которую входят атмосфера, гидросфера и верхняя часть литосферы. Их взаимодействие обуславливает образование почв и осадочных пород.

б) Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра.

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо, М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D' (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Внутреннее ядро, имеющее радиус 1225 км, твердое и обладает большой плотностью - 12,5 г/см3. Внешнее ядро жидкое, его плотность 10 г/см3. На границе ядра и мантии отмечается резкий скачок не только в скорости продольных волн, но и в плотности. В мантии она снижается до 5,5 г/см3. Слой D", находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре значительно превышают температуры мантии. Местами данный слой порождает огромные, направленные к поверхности Земли сквозь мантийные тепломассопотоки, называемые плюмами. Они могут проявляться на планете в виде крупных вулканических областей, как, например, на Гавайских островах, в Исландии и других регионах.

Верхняя граница слоя D" неопределенна; ее уровень от поверхности ядра может варьировать от 200 до 500 км и более. Таким образом, можно заключить, что данный слой отражает неравномерное и разноинтенсивное поступление энергии ядра в область мантии.

Границей нижней и верхней мантии в рассматриваемой схеме служит сейсмический раздел, лежащий на глубине 670 км. Он имеет глобальное распространение и обосновывается скачком сейсмических скоростей в сторону их увеличения, а также возрастанием плотности вещества нижней мантии. Этот раздел является также и границей изменений минерального состава пород в мантии.

Таким образом, нижняя мантия, заключенная между глубинами 670 и 2900 км, простирается по радиусу Земли на 2230 км. Верхняя мантия имеет хорошо фиксирующийся внутренний сейсмический раздел, проходящий на глубине 410 км. При переходе этой границы сверху вниз сейсмические скорости резко возрастают. Здесь, как и на нижней границе верхней мантии, происходят существенные минеральные преобразования.

Верхнюю часть верхней мантии и земную кору слитно выделяют как литосферу, являющуюся верхней твердой оболочкой Земли, в противоположность гидро- и атмосфере. Благодаря теории тектоники литосферных плит термин "литосфера" получил широчайшее распространение. Теория предполагает движение плит по астеносфере - размягченном, частично, возможно, жидком глубинном слое пониженной вязкости. Однако сейсмология не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных слоев, расположенных по вертикали, а также прерывистость их по горизонтали. Особенно определенно их чередование фиксируется в пределах континентов, где глубина залегания астеносферных слоев (линз) варьирует от 100 км до многих сотен.

Под океанскими абиссальными впадинами астеносферный слой лежит на глубинах 70-80 км и менее. Соответственно нижняя граница литосферы фактически является неопределенной, а это создает большие трудности для теории кинематики литосферных плит, что и отмечается многими исследователями.

Таковы основы представлений о строении Земли, сложившиеся к настоящему времени. Далее обратимся к новейшим данным в отношении глубинных сейсмических рубежей, представляющих важнейшую информацию о внутреннем строении планеты.

в) Земля относится к планетам земной группы, и в отличие от газовых гигантов, таких как Юпитер, имеет твёрдую поверхность. Это крупнейшая из четырёх планет земной группы в Солнечной системе, как по размеру, так и по массе. Кроме того, Земля среди этих четырёх планет имеет наибольшие плотность, поверхностную гравитацию и магнитное поле. Это единственная известная планета с активной тектоникой плит. Недра Земли делятся на слои по химическим и физическим (реологическим) свойствам, но в отличие от других планет земной группы, Земля имеет ярко выраженное внешнее и внутреннее ядро. Наружный слой Земли представляет собой твёрдую оболочку, состоящую главным образом из силикатов. От мантии она отделена границей с резким увеличением скоростей продольных сейсмических волн — поверхностью Мохоровичича. Твёрдая кора и вязкая верхняя часть мантии составляют литосферу. Под литосферой находится астеносфера, слой относительно низкой вязкости, твёрдости и прочности в верхней мантии. Значительные изменения кристаллической структуры мантии происходят на глубине 410—660 км ниже поверхности, охватывающей переходную зону (en:Transition zone (Earth)), которая отделяет верхнюю и нижнюю мантию. Под мантией находится жидкий слой, состоящий из расплавленного железа с примесями никеля, серы и кремния — ядро Земли. Сейсмические измерения показывают, что оно состоит из 2 частей: твёрдого внутреннего ядра с радиусом ~1220 км и жидкого внешнего ядра, с радиусом ~ 2250 км.

г) Литосфера - это твердая оболочка Земли, включающая слои земной коры и верхнюю твердую часть верхней мантии. Снизу она подстилается астеносферным слоем, а сверху ограничена атмосферой и гидросферой. Мощность литосферы непостоянна под континентами и океанами и достигает 100-120 км. О вещественном составе литосферы можно судить по магматическим горным породам, которые произошли из её слоев; нижняя часть этой оболочки сложена ультрабазитами. Астеносфера - предполагаемый слой мантии, подстилающий литосферу, способный к вязкому или пластическому течению. Характеризуется следующими особенностями: а) по Дэна - это “жидкий подкоровый слой”; средняя мощность под континентами - 100-200 км; с подошвой на глубине 250 км; под срединно-океаническими хребтами соответственно 30-50 км и подошва находится на глубине 400 км; б) имеет пониженную скорость сейсмических волн; в) вязкость на 2-3 порядка ниже, чем в выше- и нижележащей мантии; г) при небольшом изменении Р и Т начинается плавление и возникают магматические очаги; д) Причина образования астеносферы - нарастание Т преобладает над эффектом давления; температуры близки к области плавления; е) вещество находится в аморфном состоянии; ж) астеносфера может содержать свободную воду, что снижает Т плавления; з) сама астеносфера, вероятно, не однородна и состоит из нескольких слоев. Роль астеносферы: а) в ней затухают движения, исходящие из более глубинных слоев мантии; б) генератор движений в литосфере, т.к. происходит магмо-образование и подъем блоков ЗК; в) по пластичной астеносфере происходит перемещение твердой литосферы. Между литосферой и астеносферным слоем устанавливается изостатическое равновесие, что отражается явлением изостазии. Изостазия - это равновесное состояние литосферы по отношению к астеносфере. Это означает, что давление литосферы примерно на глубине 100 км везде одинаково. Тектоносфера - внешняя оболочка Земли, охватывающая ЗК и верхнюю часть мантию, в которой происходят тектонические и магматические процессы, обуславливающие вертикальную и горизонтальную неоднородность состава Земли.