- •Оглавление
- •Механика Слух дельфинов
- •Сейсмические волны
- •Анализ звука1
- •Анализ звука
- •Цунами1
- •Цунами2
- •Слух человека
- •Флотация
- •Сейсмические методы исследования
- •Шум и здоровье человека1
- •Шум и здоровье человека2
- •Человеческие голоса
- •Восприятие звуковых волн
- •Как ориентируются летучие мыши
- •Запись звука
- •Молекулярная физика Поверхностное натяжение
- •Охлаждающие смеси
- •Ледяные узоры на стекле
- •Кипение
- •Аморфные и кристаллические тела
- •Как замерзают растворы1
- •Как замерзают растворы2
- •Адсорбция1
- •Адсорбция2
- •Растворение газов в жидкости
- •Опыт Штерна
- •Металлические стёкла
- •Перегретая жидкость
- •Пересыщенный пар
- •Вулканы
- •Тройная точка1
- •Тройная точка2
- •Туман под микроскопом
- •Гейзеры
- •Термоэлементы
- •Как пьют кошки
- •Конец формы
- •Начало формы
- •Экспериментальное открытие закона эквивалентности тепла и работы.
- •Парниковый эффект
- •Наночастицы
- •Электромагнитные явления Огни святого Эльма
- •Электрические рыбы1
- •Электрические рыбы2
- •Конец формы
- •Молния1
- •Молния2
- •Молния3
- •Начало формы
- •Начало формы
- •Шаровая молния
- •Защита от молнии
- •Конец формы
- •Молния и гром
- •Электрическая дуга1
- •Электрическая дуга2
- •Окно в мир
- •Пьезоэлектричество
- •Начало формы
- •Токи Фуко1
- •Токи Фуко2
- •Магнитная подвеска1
- •Магнитная подвеска2
- •Магнитная подушка
- •Принцип действия индукционной плиты1
- •Принцип действия индукционной плиты2
- •Микроволновая печь (свч-печь)
- •Опыты Джильберта по магнетизму.
- •Начало формы
- •Начало формы
- •Геомагнетизм
- •Электромагнитные волны Тепловое излучение
- •1) Кита 2) слона
- •3) Человека 4) мыши
- •Из истории развития взглядов на природу света
- •Открытие рентгеновских лучей
- •Ультрафиолетовое излучение
- •Начало формы
- •Начало формы
- •Тепловое зрение змей
- •Оптика Давление света
- •Цвет предметов1
- •Цвет предметов2
- •Цвета неба и заходящего Солнца
- •Эффект Доплера для световых волн
- •Микроскоп1
- •Микроскоп2
- •Атмосферная рефракция
- •Маскировка и демаскировка
- •Опыты Птолемея по преломлению света
- •Фотолюминесценция
- •Альбедо Земли
- •Изучение спектров
- •Рассеяние световых лучей в атмосфере
- •Насыщенность цвета
- •Гало и венцы1
- •Гало и венцы2
- •Цветовое зрение
- •Начало формы
- •Начало формы
- •Начало формы
- •Начало формы
- •Поглощение, отражение и пропускание света
- •Оптические телескопы
- •Атомная физика Опыты Томсона и открытие электрона
- •Регистрация заряженных частиц
- •Циклотрон
- •Определение возраста Земли
- •Начало формы
- •Начало формы
- •Коллайдер
- •Радиоактивные изотопы в археологии
- •Коллайдер
- •Пузырьковая камера
- •Камера Вильсона
- •Масс-спектрограф
- •Астрономия Метеориты
- •Свет и блеск звёзд
- •Полярные сияния1
- •Полярные сияния2
- •Полярные сияния3
- •Полярные сияния4
- •Полярные сияния5
- •Электронные и протонные полярные сияния
- •Космические лучи
Атомная физика Опыты Томсона и открытие электрона
На исходе 19-го века было проведено много опытов по изучению электрического разряда в разреженных газах. Разряд возбуждался между катодом и анодом, запаянными внутри стеклянной трубки, из которой был откачан воздух. То, что проходило от катода, было названо катодными лучами.
Чтобы определить природу катодных лучей, английский физик Джозеф Джон Томсон (1856 – 1940) провел следующий эксперимент. Его экспериментальная установка представляла собой вакуумную электронно-лучевую трубку (см. рисунок). Накаливаемый катод К являлся источником катодных лучей, которые ускорялись электрическим полем, существующим между анодом А и катодом К. В центре анода имелось отверстие. Катодные лучи, прошедшие через это отверстие, попадали в точку G на стенке трубки S напротив отверстия в аноде. Если стенка S покрыта флуоресцирующим веществом, то попадание лучей в точку G проявляется как светящееся пятнышко. На пути от A к G лучи проходили между пластинами конденсатора CD, к которым могло быть приложено напряжение от батареи.
Если включить эту батарею, то лучи отклоняются электрическим полем конденсатора и на экране S возникает пятнышко в положении G1. Томсон предположил, что катодные лучи ведут себя как отрицательно заряженные частицы. Создавая в области между пластинами конденсатора ещё и однородное магнитное поле, перпендикулярное плоскости рисунка (оно изображено точками), можно вызвать отклонение пятнышка в том же или обратном направлении.
Опыты показали, что заряд частицы равен по модулю заряду иона водорода ( 1,6⋅10−19 Кл), а её масса оказывается почти в 1840 раз меньше массы иона водорода.
В дальнейшем она получила название электрона. День 30 апреля 1897 г., когда Джозеф Джон Томсон доложил о своих исследованиях, считается «днём рождения» электрона.
Какие утверждения справедливы?
А. Катодные лучи взаимодействуют с электрическим полем.
Б. Катодные лучи взаимодействуют с магнитным полем.
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Конец формы
Начало формы
Катодные лучи (см. рисунок) попадут в точку G при условии, что между пластинами конденсатора CD
1) действует только электрическое поле
2) действует только магнитное поле
3) действие сил со стороны электрического и магнитного полей скомпенсировано
4) действие сил со стороны магнитного поля пренебрежимо мало
Конец формы
Начало формы
Что представляют собой катодные лучи?
1) рентгеновские лучи
2) гамма-лучи
3) поток электронов
4) поток ионовКонец формы
Регистрация заряженных частиц
Распространенным прибором для регистрации заряженных частиц является газоразрядный счетчик Гейгера-Мюллера. Газоразрядный счетчик представляет собой металлический цилиндр, по оси которого натянута тонкая проволока, изолированная от цилиндра. Цилиндр заполняется специальной смесью газов (например, аргон + пары спирта), давление которых 1000-1500 мм рт.ст. Счетчик включается в цепь: цилиндр соединяется с отрицательным полюсом источника тока, а нить с положительным; на них подается напряжение порядка 1000 В.
Попадание в счетчик быстрой заряженной частицы вызывает ионизацию газа. При этом образуется свободный электрон. Он движется к положительно заряженной нити, и в области сильного поля вблизи нити ионизирует атомы газа. Продукты ионизации – электроны – ускоряются полем и в свою очередь ионизируют газ, образуя новые свободные электроны, которые участвуют в дальнейшей ионизации атомов газа.
Число ионизированных атомов лавинообразно возрастает – в газе счетчика вспыхивает электрический разряд. При этом по цепи счетчика проходит кратковременный импульс электрического тока. Отрицательно заряженные электроны собираются вблизи нити, а более массивные положительно заряженные ионы медленно движутся к стенкам цилиндра. Электроны уменьшают положительный заряд нити, а положительные ионы – отрицательный заряд цилиндра, соответственно, электрическое поле внутри цилиндра ослабевает. Через промежуток времени порядка микросекунды поле ослабляется настолько, что электроны не будут иметь скорости, необходимой для ионизации. Ионизация прекращается, и разряд обрывается.
За счет притока зарядов из источника тока счетчик снова будет готов к работе через 100-2000 мкс после вспышки. Таким образом, в счетчике возникают кратковременные разряды, которые могут быть подсчитаны специальным устройством. По их числу можно оценить число частиц, попадающих в счетчик.
Какие частицы вызывают ионизацию газа?
А. Электроны.
Б. Нейтроны.
Правильным является ответ
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Конец формы
Начало формы
Что происходит при попадании в счетчик быстрой заряженной частицы? Ответ поясните.
Конец формы
Начало формы
При каком условии происходит ионизация газа в газоразрядном счетчике?
А. При попадании в него заряженной частицы.
Б. При наличии электрического поля, ускоряющего движение частицы.
Верным является ответ
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Конец формы
