- •Оглавление
- •Механика Слух дельфинов
- •Сейсмические волны
- •Анализ звука1
- •Анализ звука
- •Цунами1
- •Цунами2
- •Слух человека
- •Флотация
- •Сейсмические методы исследования
- •Шум и здоровье человека1
- •Шум и здоровье человека2
- •Человеческие голоса
- •Восприятие звуковых волн
- •Как ориентируются летучие мыши
- •Запись звука
- •Молекулярная физика Поверхностное натяжение
- •Охлаждающие смеси
- •Ледяные узоры на стекле
- •Кипение
- •Аморфные и кристаллические тела
- •Как замерзают растворы1
- •Как замерзают растворы2
- •Адсорбция1
- •Адсорбция2
- •Растворение газов в жидкости
- •Опыт Штерна
- •Металлические стёкла
- •Перегретая жидкость
- •Пересыщенный пар
- •Вулканы
- •Тройная точка1
- •Тройная точка2
- •Туман под микроскопом
- •Гейзеры
- •Термоэлементы
- •Как пьют кошки
- •Конец формы
- •Начало формы
- •Экспериментальное открытие закона эквивалентности тепла и работы.
- •Парниковый эффект
- •Наночастицы
- •Электромагнитные явления Огни святого Эльма
- •Электрические рыбы1
- •Электрические рыбы2
- •Конец формы
- •Молния1
- •Молния2
- •Молния3
- •Начало формы
- •Начало формы
- •Шаровая молния
- •Защита от молнии
- •Конец формы
- •Молния и гром
- •Электрическая дуга1
- •Электрическая дуга2
- •Окно в мир
- •Пьезоэлектричество
- •Начало формы
- •Токи Фуко1
- •Токи Фуко2
- •Магнитная подвеска1
- •Магнитная подвеска2
- •Магнитная подушка
- •Принцип действия индукционной плиты1
- •Принцип действия индукционной плиты2
- •Микроволновая печь (свч-печь)
- •Опыты Джильберта по магнетизму.
- •Начало формы
- •Начало формы
- •Геомагнетизм
- •Электромагнитные волны Тепловое излучение
- •1) Кита 2) слона
- •3) Человека 4) мыши
- •Из истории развития взглядов на природу света
- •Открытие рентгеновских лучей
- •Ультрафиолетовое излучение
- •Начало формы
- •Начало формы
- •Тепловое зрение змей
- •Оптика Давление света
- •Цвет предметов1
- •Цвет предметов2
- •Цвета неба и заходящего Солнца
- •Эффект Доплера для световых волн
- •Микроскоп1
- •Микроскоп2
- •Атмосферная рефракция
- •Маскировка и демаскировка
- •Опыты Птолемея по преломлению света
- •Фотолюминесценция
- •Альбедо Земли
- •Изучение спектров
- •Рассеяние световых лучей в атмосфере
- •Насыщенность цвета
- •Гало и венцы1
- •Гало и венцы2
- •Цветовое зрение
- •Начало формы
- •Начало формы
- •Начало формы
- •Начало формы
- •Поглощение, отражение и пропускание света
- •Оптические телескопы
- •Атомная физика Опыты Томсона и открытие электрона
- •Регистрация заряженных частиц
- •Циклотрон
- •Определение возраста Земли
- •Начало формы
- •Начало формы
- •Коллайдер
- •Радиоактивные изотопы в археологии
- •Коллайдер
- •Пузырьковая камера
- •Камера Вильсона
- •Масс-спектрограф
- •Астрономия Метеориты
- •Свет и блеск звёзд
- •Полярные сияния1
- •Полярные сияния2
- •Полярные сияния3
- •Полярные сияния4
- •Полярные сияния5
- •Электронные и протонные полярные сияния
- •Космические лучи
Начало формы
Возможны ли в пустыне миражи в виде пальм?
1) не возможны, так как плотность воздуха с высотой всегда увеличивается
2) возможны, но только в условиях песчаной бури
3) не возможны, так как нижний мираж – это изображение кусочка неба, а пальм там нет
4) возможны, при наличии более горячих слоёв воздуха, принесённых ветром из других районов пустыниКонец формы
Начало формы
Нижний мираж образуется, если
1) у поверхности земли образуется слой более горячего воздуха
2) у поверхности земли образуется слой более холодного воздуха
3) слои горячего и холодного воздуха чередуются
4) воздух равномерно прогрет
Конец формы
Конец формы
Лупа
Лупа – оптическая система (одна или несколько линз) с небольшим фокусным расстоянием (от 1 до 10 см), располагаемая между предметом и глазом, позволяющая простейшим образом увеличить угол, под которым виден предмет. Угол, под которым виден предмет, называют углом зрения (на рис. 1 это угол β).
Р
ис.
1
При рассматривании предмета «невооружённым» глазом для получения максимального угла зрения предмет нужно поместить на расстояние наилучшего видения d0. Угол зрения приблизительно равен: β≈hd0 β≈hd0.
Рис. 2
Для нормального глаза расстояние наилучшего видения принимают равным 25 см. Для близорукого глаза, который не может видеть чётко далёкие объекты, это расстояние меньше 25 см, а для дальнозоркого ––больше 25 см.
При рассматривании малых предметов с помощью лупы его помещают вблизи фокальной плоскости лупы, между фокусом и лупой. Глаз при этом рассматривает не сам предмет, а его мнимое увеличенное изображение H, которое значительно удалено от лупы и глаза на значительное расстояние d (рис. 2). При приближении предмета к фокальной плоскости его изображение отодвигается в «бесконечность».
Угол зрения, под которым виден предмет, рассматриваемый через лупу, исходя из подобия треугольников (см. рис. 2), можно приблизительно считать равным: β′≈Hd≈hFβ′≈Hd≈hF, где F – фокусное расстояние лупы.
Увеличением лупы Г называют отношение угла зрения, под которым видно изображение предмета в лупе, к углу зрения, под которым предмет виден «невооружённым» глазом с расстояния наилучшего видения: Г=β′β=d0FГ=β′β=d0F. Таким образом, увеличение лупы зависит не только от фокусного расстояния линзы, но и от особенностей глаза человека, который пользуется этой лупой.
Увеличение можно сделать очень большим, применяя короткофокусные линзы. Однако в этом случае появляются значительные аберрации (искажения). Для их устранения лупы с большим увеличением (до 50) делают из двух или трёх линз. Однолинзовые лупы обычно делают с 2–4-кратным увеличением.
Одна и та же линза с фокусным расстоянием 10 см даст увеличение
1) больше, чем 2,5, для близорукого глаза и меньше, чем 2,5, для дальнозоркого
2) меньше, чем 2,5, для близорукого глаза и больше, чем 2,5, для дальнозоркого
3) больше, чем 2,5, для близорукого глаза и равно 2,5 для нормального
4) меньше, чем 2,5, для дальнозоркого глаза и равно 2,5 для нормальногоКонец формы
