- •Оглавление
- •Механика Слух дельфинов
- •Сейсмические волны
- •Анализ звука1
- •Анализ звука
- •Цунами1
- •Цунами2
- •Слух человека
- •Флотация
- •Сейсмические методы исследования
- •Шум и здоровье человека1
- •Шум и здоровье человека2
- •Человеческие голоса
- •Восприятие звуковых волн
- •Как ориентируются летучие мыши
- •Запись звука
- •Молекулярная физика Поверхностное натяжение
- •Охлаждающие смеси
- •Ледяные узоры на стекле
- •Кипение
- •Аморфные и кристаллические тела
- •Как замерзают растворы1
- •Как замерзают растворы2
- •Адсорбция1
- •Адсорбция2
- •Растворение газов в жидкости
- •Опыт Штерна
- •Металлические стёкла
- •Перегретая жидкость
- •Пересыщенный пар
- •Вулканы
- •Тройная точка1
- •Тройная точка2
- •Туман под микроскопом
- •Гейзеры
- •Термоэлементы
- •Как пьют кошки
- •Конец формы
- •Начало формы
- •Экспериментальное открытие закона эквивалентности тепла и работы.
- •Парниковый эффект
- •Наночастицы
- •Электромагнитные явления Огни святого Эльма
- •Электрические рыбы1
- •Электрические рыбы2
- •Конец формы
- •Молния1
- •Молния2
- •Молния3
- •Начало формы
- •Начало формы
- •Шаровая молния
- •Защита от молнии
- •Конец формы
- •Молния и гром
- •Электрическая дуга1
- •Электрическая дуга2
- •Окно в мир
- •Пьезоэлектричество
- •Начало формы
- •Токи Фуко1
- •Токи Фуко2
- •Магнитная подвеска1
- •Магнитная подвеска2
- •Магнитная подушка
- •Принцип действия индукционной плиты1
- •Принцип действия индукционной плиты2
- •Микроволновая печь (свч-печь)
- •Опыты Джильберта по магнетизму.
- •Начало формы
- •Начало формы
- •Геомагнетизм
- •Электромагнитные волны Тепловое излучение
- •1) Кита 2) слона
- •3) Человека 4) мыши
- •Из истории развития взглядов на природу света
- •Открытие рентгеновских лучей
- •Ультрафиолетовое излучение
- •Начало формы
- •Начало формы
- •Тепловое зрение змей
- •Оптика Давление света
- •Цвет предметов1
- •Цвет предметов2
- •Цвета неба и заходящего Солнца
- •Эффект Доплера для световых волн
- •Микроскоп1
- •Микроскоп2
- •Атмосферная рефракция
- •Маскировка и демаскировка
- •Опыты Птолемея по преломлению света
- •Фотолюминесценция
- •Альбедо Земли
- •Изучение спектров
- •Рассеяние световых лучей в атмосфере
- •Насыщенность цвета
- •Гало и венцы1
- •Гало и венцы2
- •Цветовое зрение
- •Начало формы
- •Начало формы
- •Начало формы
- •Начало формы
- •Поглощение, отражение и пропускание света
- •Оптические телескопы
- •Атомная физика Опыты Томсона и открытие электрона
- •Регистрация заряженных частиц
- •Циклотрон
- •Определение возраста Земли
- •Начало формы
- •Начало формы
- •Коллайдер
- •Радиоактивные изотопы в археологии
- •Коллайдер
- •Пузырьковая камера
- •Камера Вильсона
- •Масс-спектрограф
- •Астрономия Метеориты
- •Свет и блеск звёзд
- •Полярные сияния1
- •Полярные сияния2
- •Полярные сияния3
- •Полярные сияния4
- •Полярные сияния5
- •Электронные и протонные полярные сияния
- •Космические лучи
Атмосферная рефракция
Прежде чем луч света от удалённого космического объекта (например, звезды) сможет попасть в глаз наблюдателя, он должен пройти сквозь земную атмосферу. При этом световой луч подвергается процессам рефракции (преломления), поглощения и рассеяния.
П
опадая
в атмосферу Земли, луч в результате
преломления отклоняется от прямой линии
по направлению к Земле. Это явление
называется рефракцией. По мере приближения
к поверхности Земли плотность атмосферы
растёт, и лучи преломляются всё
сильнее. В результате все небесные тела,
за исключением тех, что находятся в
зените, кажутся на небе выше, чем они
есть на самом деле (см. рисунок). Угол α
между истинным и видимым направлениями
на звезду называется углом рефракции.
Звёзды вблизи горизонта, свет которых
должен пройти через большую толщу
атмосферы, сильнее всего подвержены
действию атмосферной рефракции (угол
рефракции составляет порядка 1/6 углового
градуса).
Видимое смещение (обозначено пунктиром)
для истинных звёзд S1 и S2. Наблюдатель находится в точке О
Наличие атмосферных слоёв с различной плотностью, температурой и составом и существование вертикальных и горизонтальных перемещений этих слоёв могут создавать переменную рефракцию, которая приводит к видимому мерцанию звёзд.
К другим астрономическим явлениям, связанным с рефракцией света в атмосфере, относится освещение диска Луны красноватым светом во время полных лунных затмений. Такое освещение создаётся солнечными лучами, которые из-за преломления в атмосфере попадают в конус земной тени и, соответственно, на поверхность Луны.
Ещё в древности Птолемей (2 век) описал кажущееся изменение формы диска Солнца, когда оно находится у горизонта. Сплюснутым или растянутым по вертикали будет казаться диск Солнца у горизонта? Ответ поясните.
Конец формы
Начало формы
Рефракцией света в атмосфере называется атмосферно-оптическое явление, вызываемое
1) поглощением световых лучей в атмосфере
2) преломлением световых лучей в атмосфере
3) рассеянием световых лучей в атмосфере
4) поглощением, преломлением и рассеянием световых лучей в атмосфере
Конец формы
Начало формы
Какое(-ие) утверждение(-я) справедливо(-ы)?
А. Для звезды, находящейся в зените, угол рефракции равен нулю.
Б. Наблюдатель на Земле может видеть только те звёзды, истинное положение которых выше горизонта.
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Конец формы
Зелёный луч
Рефракция света в атмосфере – оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся смещении удалённых объектов. Вследствие того, что атмосфера является средой оптически неоднородной (с высотой меняется температура, плотность, состав воздуха), лучи света распространяются в ней не прямолинейно, а по некоторой кривой линии. Наблюдатель видит объекты не в направлении их действительного положения, а вдоль касательной к траектории луча в точке наблюдения (см. рис. 1).
Рис. 1. Криволинейное распространение светового луча в атмосфере (сплошная линия) и кажущееся смещение объекта (пунктирная линия)
Показатель преломления зависит не только от свойств воздушных слоёв атмосферы, но и от длины световой волны (дисперсия света). Поэтому рефракция в атмосфере сопровождается разложением светового луча в спектр. Чем меньше длина волны светового луча, тем более сильную рефракцию он испытывает. Например, фиолетовые лучи преломляются сильнее, чем зелёные, а зелёные – сильнее, чем красные. Поэтому чем меньше длина волны луча, тем сильнее будет видимое смещение за счёт рефракции. В результате верхняя каёмка диска Солнца на восходе и закате кажется сине-зелёной, нижняя – оранжево-красной (рис. 2).
Рис. 2. Пояснение к появлению зелёного луча
Дисперсия солнечных лучей в наиболее явном виде проявляется в самый последний момент захода Солнца. Когда Солнце уходит за горизонт, последним лучом мы должны были бы увидеть фиолетовый. Однако самые коротковолновые лучи – фиолетовые, синие, голубые – на долгом пути в атмосфере (когда Солнце уже у горизонта) настолько сильно рассеиваются, что не доходят до земной поверхности. Кроме того, к лучам этой части спектра менее чувствительны глаза человека. Поэтому последний луч заходящего Солнца оказывается яркого изумрудного цвета. Это явление и получило название зелёный луч.
В ясную погоду наблюдают цвет Луны при её разных положениях: высоко над горизонтом и вблизи горизонта. В каком случае цвет Луны приобретает красный оттенок? Ответ поясните.
Конец формы
Начало формы
Появление зелёного луча в момент захода Солнца связано
1) только с рефракцией света
2) только с дисперсией света
3) только с рассеянием света
4) с рефракцией, дисперсией и рассеянием света
Конец формы
Начало формы
Криволинейное распространение света при прохождении атмосферы объясняется
1) поглощением света в оптически неоднородной среде
2) рассеянием света в оптически неоднородной среде
3) преломлением света в оптически неоднородной среде
4) дисперсией света в оптически неоднородной среде
Конец формы
