Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тексты_для_ОГЭ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.91 Mб
Скачать

Тройная точка2

Можно создать условия, при которых пар, жидкость и твёрдое состояние могут попарно существовать в равновесии. Могут ли находиться в равновесии все три состояния? Такая точка на диаграмме давление – температура существует, её называют тройной.

Е сли поместить в закрытый сосуд, в котором создан вакуум, при 0 °С воду с плавающим льдом, то в свободное пространство начнут поступать водяные (и «ледяные») пары.

При давлении 4,6 мм рт. ст. наступит состояние динамического равновесия, когда количество испарившихся молекул равно количеству сконденсировавших. Теперь три фазы ––лёд, вода и пар – будут в состоянии равновесия. Эта точка и есть тройная.

Соотношения между различными состояниями наглядно показывает диаграмма для воды, изображённая на рисунке.

Кривые на рисунке – это кривые равновесия между льдом и паром (кривая (в)), льдом и водой (кривая (а)), водой и паром (кривая (б)). По вертикали, как обычно, откладывается давление, по горизонтали – температура.

Три кривые пересекаются в тройной точке и делят диаграмму на три области: лёд, вода и водяной пар.

Диаграмма состояния позволяет дать ответ на вопрос, какое агрегатное состояние вещества достигается в равновесии при определённом давлении и определённой температуре.

Если в условия, соответствующие области «лёд» на графике, поместить воду или пар, то они станут льдом. Если для жидкости или твёрдого тела создать условия, соответствующие области «пар», то получится пар, а условия области «вода» приведут к тому, что пар будет конденсироваться, а лёд – плавиться.

Диаграмма существования фаз позволяет сразу же ответить на вопрос, что произойдет с веществом при нагревании или сжатии.

На рисунке изображены две такие линии, одна из них (линия (1)) – это нагревание при нормальном давлении. Линия лежит выше тройной точки. Поэтому она пересечёт сначала кривую плавления, а затем, за пределами чертежа, и кривую испарения. Лёд при нормальном давлении расплавится при температуре 0 °С, а образовавшаяся вода закипит при 100 °С.

Иначе будет обстоять дело для льда, нагреваемого при очень небольшом давлении, скажем, чуть ниже 4,6 мм рт. ст.

Процесс нагревания изобразится линией, идущей ниже тройной точки. Кривые плавления и кипения не пересекаются этой линией. При таком незначительном давлении нагревание приведёт к непосредственному переходу льда в пар, твёрдое вещество будет прямо превращаться в пар.

 

Что произойдет со льдом при температуре и давлении, заданных точкой Б на диаграмме состояния воды?

   1) останется льдом  

 2) превратится в пар  

 3) превратится в жидкость  

 4) превратится частично в пар, частично в жидкость

Конец формы

 

Начало формы

Тройной точкой воды называют такие значения температуры и давления, при которых вода находится одновременно  

 1) только в жидком и газообразном состояния  

 2) только в твёрдом и газообразном состояниях  

 3) только в жидком и твёрдом состояниях  

 4) в твёрдом, жидком и газообразном состояниях

Конец формы

 Какая(-ие) линия(-и) на диаграмме характеризует(-ют) процесс плавления? Ответ поясните.

Туман1

При определенных условиях водяные пары, находящиеся в воздухе, частично конденсируются, в результате чего и возникают водяные капельки тумана. Капельки воды имеют диаметр от 0,5 мкм до 100 мкм. 

Возьмём сосуд, наполовину заполним водой и закроем крышкой. Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над поверхностью воды. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это конденсация пара. В конце концов, при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Если температуру повысить, то скорость испарения увеличивается и равновесие устанавливается при большей плотности водяного пара. Таким образом, плотность насыщенного пара возрастает с увеличением температуры (см. рисунок).

Рис. Зависимость плотности насыщенного водяного пара от температуры

 

Для возникновения тумана необходимо, чтобы пар стал не просто насыщенным, а пересыщенным. Водяной пар становится насыщенным (и пересыщенным) при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). Соответственно, выпадающий туман называют туманом охлаждения и туманом испарения.

Второе условие, необходимое для образования тумана — это наличие ядер (центров) конденсации. Роль ядер могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Чем больше загрязнённость воздуха, тем большей плотностью отличаются туманы.

  

Какие туманы более плотные: в городе или в горных районах? Ответ поясните.

Конец формы

 

Начало формы

При каком процессе, указанном на графике, можно наблюдать туман испарения?

  

 1) только АB  

 2) только АС  

 3) АB и АС  

 4) ни АB, ни АС

Конец формы

 

Начало формы

Из графика на рисунке видно, что при температуре 20 °С плотность насыщенного водяного пара равна 17,3 г/м3. Это означает, что при 20 °С

   1) масса насыщенных паров воды в 1м3 воздуха составляет 17,3 г  

 2) в 17,3 м3воздуха находится 1 г насыщенного водяного пара  

 3) относительная влажность воздуха равна 17,3%  

 4) плотность воздуха равна 17,3 г/м3

Туман2

 При определенных условиях водяные пары, находящиеся в воздухе, частично конденсируются, в результате чего и возникают водяные капельки тумана. Капельки воды имеют диаметр от 0,5 мкм до 100 мкм.

Возьмем сосуд, наполовину заполним водой и закроем крышкой. Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над поверхностью воды. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это конденсация пара. В конце концов, при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Если температуру повысить, то скорость испарения увеличивается и равновесие устанавливается при большей плотности водяного пара. Таким образом, плотность насыщенного пара возрастает с увеличением температуры (см. рисунок).    Зависимость плотности насыщенного водяного пара от температуры

Для возникновения тумана необходимо, чтобы пар стал не просто насыщенным, а пересыщенным. Водяной пар становится насыщенным (и пересыщенным) при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). Соответственно, выпадающий туман называют туманом охлаждения и туманом испарения.

Второе условие, необходимое для образования тумана — это наличие ядер (центров) конденсации. Роль ядер могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Чем больше загрязненность воздуха, тем большей плотностью отличаются туманы.

Из графика на рисунке видно, что при температуре 20°С плотность насыщенного водяного пара равна 17,3 г/м3. Это означает, что при 20°С

  

 1) в 1м3 воздуха находится 17,3 г водяного пара  

 2) в 17,3 м3воздуха находится 1 г водяного пара  

 3) относительная влажность воздуха равна 17,3%  

 4) плотность воздуха равна 17,3 г/м3

Конец формы

 

Начало формы

Для каких процессов, указанных на рисунке, можно наблюдать туман испарения?

  

 1) только АB  

 2) только АС  

 3) АB и АС  

 4) ни АB, ни АС