Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Джеймс Клекр Максвелл.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
147.99 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКРЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Г.И. НОСОВА»

Кафедра электропривода и мехатроники

ДОКЛАД

по дисциплине  История и методология науки и производства (электротехники)

на тему: Джеймс Клерк Ма́ксвелл

Исполнитель: Казанкин Роман Александрович студент _1_курса,группа _АМм-16_

Руководитель: Николаев Александр Аркадьевич, кандидат технических наук, доцент

Работа защищена «____»______ 2017г. с оценкой ________ _________

(оценка) (подпись)

Магнитогорск, 2017

Содержание

Обзор жизни и творчества 3

Происхождение и юность. Первая научная работа (1831—1847) 3

Эдинбургский университет. Фотоупругость (1847—1850) 4

Кембридж (1850—1856) 5

Теория цветов 5

Первая работа по электричеству 6

Абердин (1856—1860) 7

Кинетическая теория газов. Распределение Максвелла 9

Первая цветная фотография 10

Ток смещения. Уравнения Максвелла 12

Теория процессов переноса. «Демон Максвелла» 14

Кватернионы 15

«Трактат об электричестве и магнетизме» 16

Последние работы по термодинамике и молекулярной физике 18

Болезнь и смерть 19

Джеймс Клерк Ма́ксвелл (англ. James Clerk Maxwell; 13 июня 1831, Эдинбург, Шотландия — 5 ноября 1879, Кембридж, Англия) — британский физик, математик и механик. Шотландец по происхождению. Член Лондонского королевского общества (1861). Максвелл заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов (установил распределение молекул газа по скоростям). Одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики («демон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость — газ и другие). Пионер количественной теории цветов; автор трёхцветного принципа цветной фотографии. Среди других работ Максвелла — исследования по механике (фотоупругость, теорема Максвелла в теории упругости, работы в области теории устойчивости движения, анализ устойчивости колец Сатурна), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов.

Обзор жизни и творчества

Происхождение и юность. Первая научная работа (1831—1847)

Джеймс Клерк Максвелл принадлежал к старинному шотландскому роду Клерков из Пениквика (англ. Penicuik). Его отец, Джон Клерк Максвелл, был владельцем фамильного имения Миддлби в Южной Шотландии (вторая фамилия Максвелл отражает именно этот факт). Он окончил Эдинбургский университет и был членом адвокатской коллегии, но не питал любви к юриспруденции, увлекаясь в свободное время наукой и техникой (он даже опубликовал несколько статей прикладного характера) и регулярно посещая в качестве зрителя заседания Эдинбургского королевского общества (англ. Royal Society of Edinburgh). В 1826 году он женился на Фрэнсис Кей (Frances Cay), дочери судьи Адмиралтейского суда, которая спустя пять лет родила ему сына.

Вскоре после рождения сына семья переехала из Эдинбурга в своё заброшенное имение Миддлби, где был построен новый дом, получивший название Гленлэр (Glenlair, то есть «берлога в узкой лощине»). Здесь Джеймс Клерк Максвелл провёл свои детские годы, омрачённые ранней смертью матери от рака. Жизнь на природе сделала его выносливым и любопытным. С раннего детства он проявлял интерес к окружающему миру, был окружён различными «научными игрушками» (например, «магическим диском» — предшественником кинематографа[5], моделью небесной сферы, волчком-«дьяволом» и др.), многое почерпнул из общения со своим отцом, увлекался поэзией и совершил первые собственные поэтические опыты. Лишь в десятилетнем возрасте у него появился специально нанятый домашний учитель, однако такое обучение оказалось неэффективным, и в ноябре 1841 года Максвелл переехал к своей тёте Изабелле.

Поначалу учёба не привлекала Максвелла, однако постепенно он почувствовал к ней вкус и стал лучшим учеником класса. В это время он увлёкся геометрией, делал из картона многогранники. Его понимание красоты геометрических образов возросло после лекции художника Дэвида Рамзая Хея об искусстве этрусков. Размышления над этой темой привели Максвелла к изобретению способа рисования овалов. Этот метод, восходивший к работам Рене Декарта, состоял в использовании булавок-фокусов, нитей и карандаша, что позволяло строить окружности (один фокус), эллипсы (два фокуса) и более сложные овальные фигуры (большее количество фокусов). Эти результаты были доложены профессором Джеймсом Форбсом на заседании Эдинбургского королевского общества и затем опубликованы в его «Трудах». За время учёбы в академии Максвелл близко сошёлся с одноклассником Льюисом Кемпбеллом (англ. Lewis Campbell), впоследствии известным филологом-классицистом и биографом Максвелла, и будущим известным математиком Питером Гатри Тэтом, учившимся классом младше.

Эдинбургский университет. Фотоупругость (1847—1850)

Эдинбургский университет в начале XIX века

В 1847 году срок обучения в академии закончился, и в ноябре Максвелл поступил в Эдинбургский университет, где слушал лекции физика Форбса, математика Филипа Келланда, философа Уильяма Гамильтона; изучал многочисленные труды по математике, физике, философии, ставил опыты по оптике, химии, магнетизму. За время учёбы Максвелл подготовил статью о кривых качения, однако основное внимание он уделял изучению механических свойств материалов при помощи поляризованного света. Идея этого исследования восходит к его знакомству весной 1847 года с известным шотландским физиком Уильямом Николем (англ. William Nicol), который подарил ему два поляризационных прибора своей конструкции (призмы Николя). Максвелл понял, что поляризованное излучение можно использовать для определения внутренних напряжений нагруженных твёрдых тел.

Кембридж (1850—1856)

Учёба в университете

В 1850 году, несмотря на желание отца оставить сына поближе к себе, было решено, что Максвелл отправится в Кембриджский университет (все его друзья уже покинули Шотландию для получения более престижного образования). Осенью он прибыл в Кембридж, где поступил в самый дешёвый колледж Питерхаус (англ. Peterhouse), получив комнату в здании самого колледжа. Однако он не был удовлетворён учебной программой Питерхауса, к тому же не было практически никаких шансов остаться в колледже после окончания обучения.

В 1852 году Максвелл стал стипендиатом колледжа и получил комнату непосредственно в его здании. В это время он мало занимался научной деятельностью, зато много читал, посещал лекции Джорджа Стокса и семинары Уильяма Хопкинса, готовившего его к сдаче экзаменов, заводил новых друзей, писал ради забавы стихи (многие из них были впоследствии опубликованы Льюисом Кемпбеллом). Максвелл принимал активное участие в интеллектуальной жизни университета. Он был избран в «клуб апостолов», объединявший двенадцать человек с самыми оригинальными и глубокими идеями; там он выступал с докладами на самые различные темы. Общение с новыми людьми позволило ему компенсировать застенчивость и сдержанность, которые выработались у него за годы спокойной жизни на родине.

Теория цветов

После сдачи экзамена Максвелл решил остаться в Кембридже для подготовки к профессорскому званию. Он занимался с учениками, принимал экзамены в Челтенхем-колледже, заводил новых друзей, продолжал сотрудничать с Рабочим колледжем, по предложению редактора Макмиллана начал писать книгу по оптике (она так и не была закончена), а в свободное время посещал в Гленлэре отца, здоровье которого резко ухудшилось. К этому же времени относится шуточное экспериментальное исследование по «котоверчению», вошедшее в кембриджский фольклор: его целью было определение минимальной высоты, падая с которой, кошка встаёт на четыре лапы[17].

Однако главным научным интересом Максвелла в это время была работа по теории цветов. Она берёт начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл выступил как продолжатель теории Томаса Юнга, выдвинувшего идею трёх основных цветов и связавшего их с физиологическими процессами в организме человека. Важную информацию содержали свидетельства больных цветовой слепотой, или дальтонизмом. В экспериментах по смешиванию цветов, во многом независимо повторявших опыты Германа Гельмгольца, Максвелл применил «цветовой волчок», диск которого был разделён на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Подобные устройства использовались и раньше, однако лишь Максвелл начал получать с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Так, он продемонстрировал, что смешение синего и жёлтого цветов даёт не зелёный, как часто полагали, а розоватый оттенок. Опыты Максвелла показали, что белый цвет не может быть получен смешением синего, красного и жёлтого, как полагали Дэвид Брюстер и некоторые другие учёные, а основными цветами являются красный, зелёный и синий. Для графического представления цветов Максвелл, следуя Юнгу, использовал треугольник, точки внутри которого обозначают результат смешения основных цветов, расположенных в вершинах фигуры.

Первая работа по электричеству

К годам работы в Кембридже относится и первый серьёзный интерес Максвелла к проблеме электричества. Вскоре после сдачи экзамена, в феврале 1854 года, он обратился к Уильяму Томсону с просьбой порекомендовать литературу по этой тематике и порядок её чтения[21]. В то время, когда Максвелл приступил к исследованию электричества и магнетизма, существовали два взгляда на природу электрических и магнитных эффектов. Большинство континентальных учёных, таких как Андре Мари Ампер, Франц Нейман и Вильгельм Вебер, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами, которые мгновенно взаимодействуют на расстоянии. Электродинамика, развитая этими физиками, представляла собой оформившуюся и строгую науку[22]. С другой стороны, Майкл Фарадей, первооткрыватель явления электромагнитной индукции, выдвинул идею силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Согласно Фарадею, силовые линии заполняют всё окружающее пространство, формируя поле, и обусловливают электрические и магнитные взаимодействия. Максвелл не мог принять концепцию действия на расстоянии, она противоречила его физической интуиции[23], поэтому вскоре он перешёл на позиции Фарадея:

Перед Максвеллом встал вопрос построения математической теории, которая включала бы как фарадеевские представления, так и правильные результаты, полученные приверженцами дальнодействия. Максвелл решил воспользоваться методом аналогий, успешно применённым Уильямом Томсоном, который ещё в 1842 году подметил аналогию между электрическим взаимодействием и процессами теплопередачи в твёрдом теле. Это позволило ему применить к электричеству результаты, полученные для теплоты, и дать первое математическое обоснование процессам передачи электрического действия посредством некоторой среды. В 1846 году Томсон изучил аналогию между электричеством и упругость. Максвелл воспользовался другой аналогией: он разработал гидродинамическую модель силовых линий, уподобив их трубкам с идеальной несжимаемой жидкостью (векторы магнитной и электрической индукций аналогичны вектору скорости жидкости), и впервые выразил закономерности полевой картины Фарадея на математическом языке (дифференциальные уравнения)[26][27]. По образному выражению Роберта Милликена, Максвелл «облёк плебейски обнажённое тело фарадеевских представлений в аристократические одежды математики»[28]. Однако вскрыть связь между покоящимися зарядами и «движущимся электричеством» (токами), отсутствие которой, видимо, было одной из основных его мотиваций в работе, ему в то время не удалось[29].