Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
механика.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.05 Mб
Скачать

Сила тяжести. Вес

Каждое находящееся на Земле тело массой m притягивается к Земле под действием силы тяжести, направ­ленной к центру ее и равной

(1.68)

[М — масса Земли, R — расстояние от тела до ее центра (вблизи поверх­ности Земли это расстояние приблизительно равно ее радиусу R3)].

Если это тело лежит на непод­вижной опоре, то на него действуют две силы: сила реакции опоры N и сила тяготения F. Эти две силы дают равнодействующую силу Fn направленную перпендикулярно оси враще­ния (рис. 1.17):

[Fn — сила, действующая на тело, движущееся по окружности, плоскость которой перпендикулярна оси вращения Земли].

Вес тела Р (на рисунке он не показан) — это сила, противодейст­вующая, согласно третьему закону Ньютона, силе нормального давле­ния N.

Равнодействующая сила Fm согласно второму закону Ньютона, вызывает нормальное (центростремительное) ускорение , т.е.

Учитывая, что , находим

Следовательно, Fn имеет максимальное значение на экваторе и Fn = 0 на полюсах. Поэтому во всех точках земной поверхности, кроме полю­сов, вес тела Р меньше силы тяготения F. Однако в ряде практических задач можно пренебречь суточным вращением Земли и считать, что вес тела Р равен силе тяготения:

Взаимное притяжение всех без исключения материальных тел, на­блюдаемое в любой среде, называют гравитационным взаимодействи­ем, которое осуществляется при помощи поля тяготения (гравитацион­ное поле). Это поле наряду с другими физическими полями и веществом является одной из форм материи.

§20 Потенциальное поле сил Центральные силы

Поле, в котором работа силы не зависит от формы пути, а зависит лишь от положений начальной и конечной точек траектории, называют потенциальным, а силы, действующие в нем, — консервативными.

В потенциальном поле работа сил по любому замкнутому контуру равна нулю, что является необходимым и достаточным условием незави­симости работы от формы пути и признаком любого потенциального по­ля сил.

Если в поле действуют силы, зависящие только от расстояния меж­ду взаимодействующими частицами, и направлены по прямой, соединяю­щей центр масс этих частиц, то такие силы называют центральными.

Центральными силами являются гравитационные, кулоновские си­лы. Всякое стационарное поле центральных сил потенциально. При пе­ремещении частицы в потенциальном поле работа сил поля на фиксиро­ванном участке пути равна убыли потенциальной энергии частицы в дан­ном поле:

, (1.69)

Частице, находящейся в любой точке поля, всегда соответствует оп­ределенная потенциальная энергия. В поле упругой силы потенциальная энергия равна , в поле силы тяжести U = mgh.

Связь между потенциальной энергией

Потенциальная энергия — это функция, определяемая с точностью до некоторой произвольной постоянной. Эта произвольная постоянная одинакова для всех точек поля, а так как при всех вычислениях играет роль разность потенциальных энергий, то значение произвольной посто­янной несущественно, поэтому в приведенных выше выражениях она отсутствует. В классической механике взаимодействие частицы с окру­жающими телами описывают с помощью сил или с помощью потенци­альной энергии. Согласно (1.69), имеем

Из этой формулы следует, что связь между потенциальной энергией и силой поля имеет вид

(1.70)

Символ частной производной свидетельствует о том, что производ­итная берется по определенному направлению. В общем случае потенци­альная энергия является функцией аргументов х, у, z, т. е. U(x, у, х). В этом случае в декартовой системе координат определяют проекции вектора F на оси X, Y, Z, тогда

(1.71)

[i, j, k — единичные ортогональные векторы].

Величина, стоящая в скобках, является градиентом скалярной функции.

Выражение (1.71) можно переписать в виде

(1.71`)

т.е. сила F поля равна минус градиенту потенциальной энергии.