- •Раздел: «кодирование информации. Системы счисления. Основы алебры логики. Логические основы компьютера»
- •Введение
- •Теоретическая часть глава 1. Кодирование информации. Системы счисления
- •1.1. Понятие информации
- •1.1.1. Количество информации
- •1.2. Системы счисления
- •1.3. Перевод чисел из одной системы счисления в другую
- •1.3.1. Перевод дробных чисел из одной системы счисления в другую
- •1.4. Арифметические операции в позиционных системах
- •1.5. Представление чисел в компьютере
- •1.6. Кодирование текстовой информации. Кодировка ascii.
- •1.6.1. Вычисление информационного объема сообщения.
- •1.6.2. Кодирование и декодирование информации.
- •1.7. Кодирование и обработка графической информации.
- •Глава 2. Основы алебры логики. Логические основы компьютера
- •2.1. Основы логики
- •2.2. Логические выражения и таблицы истинности
- •6) Операция "исключающее или"
- •2.3. Логические законы и правила преобразования логических выражений.
- •2.4. Логические основы компьютера
- •Примеры типовых решений пример решения типового варианта по теме «система счисления» Задача №1
- •Задача №2.
- •Задача №3
- •Задача №4.
- •2 1 0 ← Разряды
- •4 3 2 1 0 ← Разряды
- •Пример решения типового варианта по теме «кодирование информации» Задача №1
- •Задача №2
- •Задача №3
- •Задача №4
- •Задача №5
- •Пример решения типового варианта по теме «алгебра логики» Задача №1
- •Задача №2
- •Задача №3
- •Задача №4
- •Задача №5
- •Вариант №2
- •Вариант №3
- •Вариант №4
- •Вариант №5
- •Вариант №6
- •Вариант №7
- •Вариант №8
- •Вариант №9
- •Вариант №10
- •Вариант №11
- •Вариант №12
- •Вариант №13
- •Вариант №14
- •Вариант №15
- •Вариант №16
- •Вариант №17
- •Вариант №18
- •Вариант №19
- •Вариант №20
- •Вариант №13
- •Вариант №2
- •Вариант №3
- •Вариант №4
- •Вариант №5
- •Вариант №6
- •Вариант №7
- •Вариант №8
- •Вариант №9
- •Вариант №10
- •Вариант №11
- •Вариант №12
- •Вариант №13
- •Вариант №14
- •Вариант №15
- •Вариант №16
- •Вариант №17
- •Вариант №18
- •Вариант №19
- •Вариант №20
- •Задача №5 Вариант №1
- •Вариант №2
- •Вариант №3
- •Вариант №4
- •Вариант №5
- •Вариант №6
- •Вариант №7
- •Вариант №8
- •Вариант №9
- •Вариант №10
- •Вариант №11
- •Вариант №12
- •Вариант №13
- •Вариант №14
- •Вариант №15
- •Вариант №16
- •Вариант №17
- •Вариант №18
- •Вариант №19
- •Вариант №20
- •«Кодирование информации. Системы счисления. Основы алебры логики. Логические основы компьютера»
Задача №2
Сколько различных решений имеет уравнение ((K\/L) /\ (M\/N)) = 1, где K, L, M, N – логические переменные?
В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа Вам нужно указать количество таких наборов.
Решение
((K\/L) /\ (M\/N)) = 1
K |
L |
M |
N |
K\/L |
M\/N |
(K\/L) /\ (M\/N) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
Ответ: 9
Задача №3
Пример 1. Для какого из указанных значений числа X истинно высказывание ¬ ((X>2) -> (X>3))
1) 1
2) 2
3) 3
4) 4
Решение
определим порядок действий: сначала вычисляются результаты отношений в скобках, затем выполняется импликация (поскольку есть «большие» скобки), затем – отрицание (операция «НЕ») для выражения в больших скобках
выполняем операции для всех приведенных возможных ответов (1 обозначает истинное условие, 0 – ложное); сначала определяем результаты сравнения в двух внутренних скобках:
X |
X > 2 |
X > 3 |
(X > 2)→(X > 3) |
¬((X > 2)→(X > 3)) |
1 |
0 |
0 |
|
|
2 |
0 |
0 |
|
|
3 |
1 |
0 |
|
|
4 |
1 |
1 |
|
|
по таблице истинности операции «импликация» находим третий столбец (значение выражения в больших скобках), применив операцию «импликация» к значениям второго и третьего столбцов (в каждой строке):
X |
X > 2 |
X > 3 |
(X > 2)→(X > 3) |
¬((X > 2)→(X > 3)) |
1 |
0 |
0 |
1 |
|
2 |
0 |
0 |
1 |
|
3 |
1 |
0 |
0 |
|
4 |
1 |
1 |
1 |
|
значение выражения равно инверсии третьего столбца (меняем 1 на 0 и наоборот):
X |
X > 2 |
X > 3 |
(X > 2)→(X > 3) |
¬((X > 2)→(X > 3)) |
1 |
0 |
0 |
1 |
0 |
2 |
0 |
0 |
1 |
0 |
3 |
1 |
0 |
0 |
1 |
4 |
1 |
1 |
1 |
0 |
таким образом, ответ – 3.
Решение (вариант 2, упрощение выражения):
обозначим простые высказывания буквами:
A = X > 2, B = X > 3
тогда можно записать все выражение в виде
¬(A
→
B)
или
выразим импликацию через «ИЛИ» и «НЕ» (см. выше):
¬(A
→
B)=
¬(¬A
Ú
B)
или
раскрывая по формуле де Моргана операцию «НЕ» для всего выражения, получаем
¬(¬A
Ú
B)=
A
Ù
¬B
или
таким образом, данное выражение истинно только тогда, когда A истинно (X > 2), а B – ложно (X ≤ 3), то есть для всех X, таких что 2 < X ≤ 3
из приведенных чисел только 3 удовлетворяет этому условию,
таким образом, ответ – 3.
Выводы:
в данном случае, наверное, проще первый вариант решения (прямая подстановка всех предложенных ответов)
второй вариант позволяет не только проверить заданные значения, но и получить общее решение – все множество X, для которых выражение истинно; это более красиво для человека, обладающего математическим складом ума.
