Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Системы счисления.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
475.55 Кб
Скачать

Задача №2.

Даны два числа х и у. Чему равна сумма этих чисел, если и ?

1) 1218

2) 1718

3) 6916

4) 10000012

Общий подход: перевести оба исходных числа и ответы в одну (любую!) систему счисления, и выполнить сложение

Решение (вариант 1, через десятичную систему):

  1. сложение: 35 + 86 = 121

  1. переводим результат во все системы, в которых даны ответы (пока не найдем нужный):

121 = 11110012 = 1718 = 7916

  1. или переводим все ответы в десятичную систему

1218 = 81,

1718 = 121,

6916 = 105,

10000012 = 65

  1. таким образом, верный ответ – 2.

Решение (вариант 2, через двоичную систему):

  1. (каждая цифра восьмеричной системы отдельно переводится в три двоичных – триаду, старшие нули можно не писать)

  2. (каждая цифра шестнадцатеричной системы отдельно переводится в четыре двоичных – тетраду)

  3. складываем

1000112

+ 10101102

11110012

  1. переводим все ответы в двоичную систему

1218 = 001 010 0012 = 10100012 (по триадам)

1718 = 001 111 0012 = 11110012 (по триадам)

6916 = 0110 10012 = 11010012 (по тетрадам)

10000012 не нужно переводить

  1. правильный ответ – 2.

Решение (вариант 3, через восьмеричную систему):

  1. , никуда переводить не нужно

  2. (сначала перевели в двоичную систему, потом двоичную запись числа разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной)

  3. складываем

438

+ 1268

1718

  1. видим, что такой ответ есть, это ответ 2.

Решение (вариант 4, через шестнадцатеричную систему):

  1. (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F)

  2. , никуда переводить не нужно

  3. складываем

2316

+ 5616

7916

  1. переводим в шестнадцатеричную систему все ответы:

1218 = 001 010 0012 = 0101 00012 = 5116 (перевели в двоичную систему по триадам, разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили на буквы – A, B, C, D, E, F)

171 2 = 001 111 0012 = 0111 10012 = 7916,

6916, переводить не нужно

10000012 = 0100 00012 = 4116

  1. таким образом, верный ответ – 2.

Задача №3

Пример 1. Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

Общий подход:

  • вспомним алгоритм перевода числа из десятичной системы в систему с основанием , из него следует, что младшая цифра результата – это остаток от деления исходного числа на , а две младших цифры – это остаток от деления на и т.д.

  • в данном случае , остаток от деления числа на должен быть равен 114 = 5

  • потому задача сводится к тому, чтобы определить все числа, которые меньше или равны 25 и дают остаток 5 при делении на 16

Решение (вариант 1, через десятичную систему):

  1. общий вид чисел, которые дают остаток 5 при делении на 16:

где – целое неотрицательное число (0, 1, 2, …)

  1. среди всех таких чисел нужно выбрать те, что меньше или равны 25 («не превосходят 25»); их всего два: 5 (при ) и 21 (при )

  2. таким образом, верный ответ – 5, 21 .

Решение (вариант 2, через четверичную систему, предложен О.А. Тузовой):

  1. переведем 25 в четверичную систему счисления: 25 = 1214, все интересующие нас числа не больше этого значения

  2. из этих чисел выделим только те, которые заканчиваются на 11, таких чисел всего два:

это 114 = 5 и 1114 = 21

  1. таким образом, верный ответ – 5, 21 .

Пример 2. Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 23 оканчивается на 2.

Общий подход:

  • здесь обратная задача – неизвестно основание системы счисления, мы обозначим его через

  • поскольку последняя цифра числа – 2, основание должно быть больше 2, то есть

  • вспомним алгоритм перевода числа из десятичной системы в систему с основанием (см. презентацию), из него следует, что младшая цифра результата – это остаток от деления исходного числа на

Решение:

  1. итак, нужно найти все целые числа , такие, что остаток от деления 23 на равен 2, или (что то же самое)

(*)

где – целое неотрицательное число (0, 1, 2, …);

  1. сложность в том, что и , и неизвестны, однако здесь нужно «играть» на том, что это натуральные числа

  2. из формулы (*) получаем , так что задача сводится к тому, чтобы найти все делители числа 21, которые больше 2

  3. в этой задаче есть только три таких делителя: и

  4. таким образом, верный ответ – 3, 7, 21 .