- •1. Предмет и задачи физиологии
- •2. Методы физиологических исследований
- •3. Основные физиологические понятия
- •Все живые клетки, ткани и органы обладают возбудимостью, т.Е. Способностью отвечать на раздражение, поступающее из внешней и внутренней среды организма, переходом в деятельное состояние.
- •Понятие о регуляциии
- •4. Краткая история развития физиологии
- •«Нервно-мышечная физиология» План:
- •1 Вопрос. Двигательные единицы
- •2 Вопрос. Композиция мышц.
- •3 Вопрос.
- •1. Теории мышечного сокращения.
- •2. Одиночное и тетаническое сокращение.
- •2. Торможение в цнс
- •3. Механизмы деятельности цнс
- •4. Рефлекс, рефлекторный путь
- •5. НервныЕ центрЫ
- •Лекция 5 физиология сенсорных систем План:
- •1. Понятие о сенсорных системах. Учение и.П.Павлова об анализаторах.
- •2. Общая физиология рецепторов.
- •3. Общие закономерности деятельности сенсорных систем.
- •Общие принципы строения анализаторов
- •2. Общая физиология рецепторов.
2. Общая физиология рецепторов.
Морфологически и физиологически каждый рецептор приспособлен для восприятия раздражителя строго определенной модальности. Это так называемые «адекватные» раздражители, т. е. раздражители, к которым рецептор наиболее чувствителен.
В основу одной из общепринятых классификаций рецепторов положена модальность адекватных раздражителей. По этому признаку все рецепторы обычно делят на пять групп:
фоторецепторы, воспринимающие свет;
механорецепторы, воспринимающие механическое перемещение (прикосновение, давление, звуковые волны);
терморецепторы, чувствительные к температуре (холоду и теплу);
хеморецепторы, воспринимающие химические вещества внешней и внутренней среды (к ним относятся рецепторы, чувствительные к напряжению дыхательных газов и уровню глюкозы в крови, а также вкусовые и обонятельные);
ноцицептивные рецепторы, реагирующие на повреждения ткани, сопровождающиеся болью.
Рецепторы можно также подразделить в зависимости от того, где находится воспринимаемый ими раздражитель. В соответствии с такой классификацией рецепторы делятся на четыре группы:
1) дистантные экстероцепторы, реагирующие на отдаленные раздражители (зрительные, обонятельные и слуховые);
2) контактные экстероцепторы, воспринимающие раздражение поверхности тела (рецепторы прикосновения, давления, температурные и вкусовые);
3) интероцепторы, воспринимающие раздражители от внутренних органов и уровень химических веществ в крови, и
4) проприоцепторы, сигнализирующие о положении тела в пространстве (о расположении суставов, длине мышц).
Первичная реакция любого рецептора состоит в генерации рецепторного потенциала, возникающего в результате взаимодействия между раздражителем и мембраной рецептора.
В зависимости от характера адекватного раздражителя это взаимодействие может сопровождаться:
механической деформацией мембраны (механорецепторы);
возбуждением связанного с мембраной фотопигмента под действием световых волн (фоторецепторы);
изменением проницаемости мембраны под влиянием температуры (терморецепторы);
связыванием химических веществ мембраной рецептора (хе-морецепторы);
связыванием пептидов, высвобождающихся при повреждении ткани, с мембраной рецептора (ноцицептив-ные рецепторы).
Все рецепторные аппараты делятся на первичночувствующие (первичные) и вторичночувствующие (вторичные). К первым относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они отличаются тем, что восприятие и преобразование энергии раздражения в энергию нервного возбуждения происходит у них в самом чувствительном нейроне. К вторичночувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка, т. е. первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.
По своим основным свойствам рецепторы делятся также на быстро- и медленно-адаптирующиеся, низко- и высокопороговые, мономодальные и полимодальные и т. д.
В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно данной классификации у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибулорецепторы) и рецепторы боли.
Общие закономерности деятельности
сенсорных систем.
Анализаторы выполняют большое количество функций или операции с сигналами.
Среди них важнейшие:
Обнаружение сигналов.
Различение сигналов.
Передача и преобразование сигналов.
Кодирование поступающей информации.
Детектирование тех или иных признаков сигналов.
Опознание образов.
Обнаружение и различение сигналов (I, II) обеспечивается прежде всего рецепторами, а детектирование и опознание (V, VI) сигналов высшими корковыми уровнями анализаторов. Передача, преобразование и кодирование (III, IV) сигналов свойственны всем слоям анализаторов.
I. Обнаружение сигналов начинается в рецепторах — специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.
II. Различение сигналов. Важной характеристикой того, как сенсорные системы анализируют сигналы, является их способность обнаруживать изменения интенсивности, временных показателей или пространственных признаков стимула. Эти операции анализаторных систем, относящиеся к различению сигналов, начинаются уже в рецепторах, но и следующие анализаторные элементы в нем участвуют. Необходимо обеспечить разную реакцию на минимальное различие между стимулами. Это минимальное различие и есть порог различения (разностный порог, если речь идет о сравнении интенсивностей).
В 1834 г. Э. Вебер сформулировал следующий закон: ощущаемый прирост раздражения (порог различения) должен превышать раздражение, действовавшее ранее, на определенную долю. Так, усиление ощущения давления на кожу руки возникало лишь в том случае, когда накладывали дополнительный груз, составляющий определенную часть груза, положенного ранее: если раньше лежала гирька массой 100 г, то добавить (чтобы человек ощутил эту добавку) надо было (3 г), а если лежала гирька в 200 г, то едва ощутимая добавка составляла 6 г.
Пространственное различение сигналов основано на различиях в пространственном распределении возбуждения в слое рецепторов и в нервных слоях. Так, если какие-то два раздражителя возбудили два соседних рецептора, то различение этих двух раздражений невозможно, а они будут восприняты как единое целое. Для пространственного различения двух стимулов необходимо, чтобы между возбуждаемыми ими рецепторами находился хотя бы один невозбужденный рецепторный элемент.
Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный последующим стимулом, не попадал в рефракторный период от предыдущего раздражения.
III. Передача и преобразование. После преобразования в рецепторах энергии физического или химического раздражителя в процесс нервного возбуждения начинается цепь процессов по преобразованию и передаче полученного сигнала. Цель их — донести до высших отделов мозга наиболее важную информацию о раздражителе и притом в форме, наиболее удобной для надежного и быстрого его анализа.
Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований сигналов можно выделить изменение их масштаба в целом или искажение соотношения разных пространственных частей.
Так, в зрительной и соматосенсорной системах на корковом уровне происходит значительное искажение геометрических пропорций представительства отдельных частей тела или частей поля зрения. В зрительной коре резко расширено представительство центральной ямки сетчатки при относительной редукции периферии поля зрения («циклопический глаз»).
Временные преобразования информации сводятся в основном к ее сжатию в отдельные импульсные посылки, разделенные паузами или интервалами. В целом для всех анализаторов типичным является переход от тонической импульсации нейронов к фазическим пачечным разрядам нейронов.
Ограничение избыточной информации и выделение существенных признаков сигналов.
По некоторым подсчетам, одна только зрительная информация, идущая от фоторецепторов, в обычных условиях могла бы за несколько минут насытить все информационные резервы мозга.
Эволюция отобрала ряд универсальных и простых приемов ограничения этой избыточности.
Это прежде всего сжатие афферентного канала, особенно выраженное в зрительной системе, наличие суживающейся сенсорной воронки, что резко ограничивает количество информации, идущей в высшие зрительные центры.
Другой прием ограничения избыточности информации — подавление или устранение поступления информации о менее существенных явлениях. Природа создала универсальный простой метод отбора: менее важно то, что не изменяется или изменяется медленно как во времени, так и в пространстве.
Например, длительно действуют неизменные стимулы большой пространственной протяженности; неподвижное изображение или давление на кожную поверхность. В этих случаях непрерывно передавать в мозг детальную информацию о состоянии всех возбужденных рецепторов не имеет смысла- Правильнее сообщить ему только о начале, а затем о конце такого раздражения, причем выгодно передать эти сведения не от всех возбужденных стимулом рецепторов, а только от тех, которые лежат на краю возбужденной области. Таким образом, мозг получит резко уменьшенную (количественно редуцированную) информацию о состоянии лишь тех участков рецепторной поверхности, которые воспринимают резкие изменения раздражителя. Именно эта информация наиболее важна для формирования приспособительных поведенческих актов.
IV. Кодирование поступающей информации. Кодированием называют процесс преобразования информации в условную форму — код, совершаемый по определенным правилам.
В анализаторных системах позвоночных животных сигналы кодируются двоичным кодом, т. е. наличием или отсутствием залпа импульсов в тот или иной момент времени, в том или ином нейроне.
Такой способ кодирования не единственно возможный и не наиболее выгодный. Его достоинство — помехоустойчивость в связи с крайней простотой. Информация о раздражениях и их параметрах передается у позвоночных животных в виде отдельных групп или «пачек» импульсов («залпов импульсов»).
Возможно кодирование поступающей информации изменением числа волокон, по которым она параллельно передается, а также местом возбуждения в нейронном слое уровне зрительной системы определенной небольшой группы нейронов означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.
На высших уровнях анализаторов происходит переход от преимущественно временного кодирования признаков раздражителя (свойственного периферическим отделам) к преимущественно пространственному (в основном позиционному) коду.
V. Детектирование сигналов — специальный вид избирательного анализа отдельных признаков раздражителя и их конкретного биологического значения. Осуществляют такой анализ специализированные нейроны-детекторы, которые благодаря свойствам своих связей способны реагировать лишь на строго определенные параметры стимула.
Общим в распределении детекторов является иерархический принцип, согласно которому на более низких уровнях локализуются детекторы более простых признаков, обеспечивающие простой анализ. В высших отделах анализатора, как правило, сконцентрированы детекторы более сложных признаков.
VL Опознание образов — конечная и наиболее сложная операция анализатора. Она заключается в классификации образа, отнесении его к тому или иному классу объектов, с которыми ранее встречался организм. Это происходит на основе всей предыдущей обработки афферентного сигнала, после расщепления его нейронами-детекторами на отдельные признаки и их раздельного параллельного анализа. Задача операции опознания может быть сведена к построению мозгом «модели раздражителя» и ее выделению из множества других подобных моделей. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм.
Опознание происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Точно так же знакомый голос опознается при разной его громкости, наличии звукового фона, а смысл речи — и при значительных изменениях ее тембра и темпа. Отсюда следует, что на каких-то высших уровнях анализатора организуется независимое от этих изменений признаков отражение сигнала — сенсорный образ.
Это совокупность сигналов, отображаемых в сходном пространственно-временном распределении процессов возбуждения и торможения на высшем уровне анализатора.
Совокупность рецепторов, импульсы от которых поступают на данный нейрон, называют его рецептивным полем.
