- •Лекции по линейной алгебре и аналитической геометрии
- •3 Семестр
- •Лекция № 1. Множества и операции над ними.
- •Отношения.
- •Лекция № 3. Соответствия и функции.
- •Однородные бинарные отношения.
- •Лекция № 4. Однородные бинарные отношения.
- •Отношение эквивалентности.
- •Отношение сравнимости целых чисел по модулю.
- •Лекция № 5. Отношение сравнимости целых чисел по модулю. (продолжение)
- •Линейное уравнение с одним неизвестным.
- •Линейные диофантовы уравнения.
- •Лекция № 6. Линейные диофантовы уравнения.
- •Отношение частичного порядка.
- •Лекция № 7. Отношение частичного порядка.
- •Эквивалентыне множества. Мощность множеств.
- •Счётные множества.
- •Множества мощности континуума.
- •Лекция № 8. Решетки.
- •Специальные виды решеток.
- •Дистрибутивные решетки.
Лекции по линейной алгебре и аналитической геометрии
3 Семестр
Лектор Мещанинов Дмитрий Германович
Лекция № 1. Множества и операции над ними.
Обозначение.
A,B,C… – множества
a,b,c… – элементы множества
Определение 1.
Функция принадлежности множества А
Определение 2.
Универсальное множество
Определение 3.
Пустое множество
Операции над множествами:
Пересечение
Объединение
Дополнение
Разность
Симметрическая разность
Определение 4.
Отношение включения множеств
Определение 5.
Пример.
Свойства включения:
Принцип равенства
Рефлективность
Транзитивность
Обозначение.
Свойства пересечения, объединения и дополнения
(законы булевой алгебры):
Идемпотентность
Коммутативность
Ассоциативность
Поглощение
Модулярность
Дистрибутивность
Инволюция
Закон де Моргана
Свойства разности и симметрической разности:
Коммутативность
Ассоциативность
Дистрибутивность
Теорема 1.
Множество из n элементов имеет число подмножеств .
Докажем, используя метод математической индукции.
Базис индукции
Индуктивный переход
Рассмотрим все подмножества А и разобьем их на 2 части:
Не содержащие , т. е. все подмножества
По индуктивному предположению их ровно
Содержащие , их тоже.
Пример.
Определение 6.
Декартово произведение .
Пример.
Свойства декартова произведения:
Если множества А и В конечны и состоят из n и m элементов, то их декартово произведение также конечно и состоит изmn элементов.
Отношения.
Определение 1.
Пусть – некоторые множества.
n-арные (n-мерные) отношения (свойства) на множествах – это подмножества
n=1 – унарное свойство
n=2 – бинарное свойство
n=3 – тэнарное свойство
Пример.
Унарное отношение «быть чётным числом» на Z.
Бинарное отношение
Тэнарное отношение
Теорема 1.
Если – конечные множества, состоящие изэлементов, то на этих множествах можно задать число различныхn-арных отношений .
Способы задания отношений:
Словесное описание на каком-либо языке.
Таблицами, списком элементов.
Бинарные отношения:
Инфиксная запись символа отношения
Графиком
Матрицами из 0 и 1
Ориентированным графиком
Определение 2.
–однородные бинарные отношения на множестве А.
Пример.
График
Матрица
Ориентированный график
Лекция № 3. Соответствия и функции.
Определение 1.
Пусть является функцией.
Определение 2.
Функция (отображение) называется инъективной (инъекцией), если разные элементы множества А имеют различные образы.
Определение 3.
Функция (отображение) называется сюръективной (сюръекцией), если множество А совпадает со всем множеством В.
Определение 4.
Функция (отображение), инъективная и сюръективная одновременно, называется биективной (биекцией) (взаимно однозначное соответствие).
Замечание.
Интерпретация этих свойств на графах.
Функция – из каждой вершины множества А выходит не более одной стрелки.
Отображение – каждой вершины множества А выходит ровно одна стрелка.
Инъективная функция – в каждую вершину множества В входит не более одной стрелки.
Сюръективная функция – в каждую вершину множества В входит не менее одной стрелки.
Примеры.
Не функция
Функция, но не отображение
Инъекция, но не сюръекци
Функция не инъективная и не сюръективная
Сюръекция, но не инъекция
Биективная функция, не биекция
Замечание.
Отображение является биекцией
Теорема 1.
Пусть А и В – конечные множества из m и n элементов, тогда
Теорема 2.
Пусть А и В множества из m и n элементов и , тогда существует ровно:
1. различных соответствий;
2. различных функций;
3. различных отображений;
4. различных инъекций;
5. различных биекций.
1) Следует из теоремы о числе различных n-арных отношений.
2)
–любой из n элементов Øразличных функций.
3) различных отображений.
4)
инъекций.
5) Следует из (4) при n=m.
Теорема 3.
Пусть иявляются биекциями, тогда:
1) Существуют обратные функции и, которые тоже являются биекциями.
2) Их композиция тоже является биекцией.
1)
2)