- •Оглавление
- •1.Инженерная защита атмосферы. Основные подходы, применяемые в рф. Методы и аппаратное оформление очистки выбросов предприятия от токсичных газообразных примесей.
- •2.Рассеяние шлейфов выбросов загрязняющих веществ в приземном слое атмосферы. Механизмы. Факторы влияния.
- •3.Сточные воды предприятия. Основные стадии формирования сточных вод на этапах материального производства. Основные способы очистки сточных вод предприятий.
- •4.Характеристика и классификация отходов производства и потребления. Концепция безотходной технологии. Промышленные методы обработки твердых бытовых отходов.
- •1. Критерии безотходности
- •3. Требования к безотходному производству
- •III. Основные направления безотходной и малоотходной технологии
- •5.Экологический риск. Основные методы количественной оценки.
- •6.Экологическое обоснование проектных решений при размещении инженерных объектов.
Оглавление
1.Инженерная защита атмосферы. Основные подходы, применяемые в РФ. Методы и аппаратное оформление очистки выбросов предприятия от токсичных газообразных примесей.
2.Рассеяние шлейфов выбросов загрязняющих веществ в приземном слое атмосферы. Механизмы. Факторы влияния.
3.Сточные воды предприятия. Основные стадии формирования сточных вод на этапах материального производства. Основные способы очистки сточных вод предприятий.
4.Характеристика и классификация отходов производства и потребления. Концепция безотходной технологии. Промышленные методы обработки твердых бытовых отходов.
5.Экологический риск. Основные методы количественной оценки.
6.Экологическое обоснование проектных решений при размещении инженерных объектов.
1.Инженерная защита атмосферы. Основные подходы, применяемые в рф. Методы и аппаратное оформление очистки выбросов предприятия от токсичных газообразных примесей.
Защита атмосферы
При невозможности достигнуть ПДК очисткой иногда применяют многократное разбавление токсичных веществ или выброс газов через высокие дымовые трубы для рассеивания примесей в верхних слоях атмосферы.
В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов.
Очистка газов от аэрозолей. Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.
Механическая очистка газов включает сухие и мокрые методы.
К сухим методам относятся:
– гравитационное осаждение;
– инерционное и центробежное пылеулавливание;
– фильтрация.
Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи.
Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50–100 мкм, причем степень очистки составляет не.выше 40–50%. Метод пригоден лишь для предварительной, грубой очистки газов.
Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10–15 м/с. Гидравлическое сопротивление аппарата 100 – 400 Па (10 – 40 мм вод.ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20–70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.
Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны разных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Газовый поток подается в цилиндрическую часть циклона тангенциально, описывает спираль по направлению к дну конической части и затем устремляется вверх через турбулизованное ядро потока у оси циклона на выход. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе.
Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью
Мероприятия по охране атмосферного воздуха условно можно разделить на следующие группы: экологизация технологических процессов, очистка пылегазовых выбросов, архитектурно-планировочные и инженерно-организационные мероприятия.
Методы очистка пылегазовых выбросов.
Для очистки газов от пыли применяют сухие, мокрые и электрические способы.
Сухие способы основаны на отделении пылеватых частиц от газового потока с помощью специального оборудования: пылеосадительных камер, циклонов, фильтров (тканевых, волокнистых, зернистых).
Мокрые способы очистки основаны на поглощении пыли водой, которая разбрызгивается форсунками или подается непрерывно против запыленного потока воздуха. При этом образуется большое количество сточных вод, которые должны подвергаться очистке.
Электрические способы применяют для улавливания цементной, гипсовой, угольной пыли. Основой процесса очистки является ионизация пылевидных частиц под воздействием электрического поля. Заряженные частички оседают на поверхность электрода с противоположным электрическим зарядом и удаляются с электродов путем встряхивания.
Очистка выбросов от газов осуществляется различными методами:
Метод абсорбции заключается в пропуске газового потока через жидкие растворы минеральных или органических веществ. Загрязнители реагируют с этими веществами и выпадают в осадок. Например, для очистки газового потока от диоксида серы применяют известковое молоко, от сероводорода – раствор солей кальцинированной соды и мышьяка и т. д.
Метод адсорбции заключается в пропуске газового потока через твердый пористый материал, который поглощает газовые загрязнители. В качестве адсорбента используется активный уголь, известняк. Достоинства этого способа – высокая степень очистки, недостаток – газы должны быть сухими и не содержать в своем составе пыль.
Поглощающую жидкость (абсорбент) выбирают из условия растворимости в ней поглощаемого газа, температуры и парциального давления газа над жидкостью. Решающим условием при выборе абсорбента является растворимость в нем извлекаемого компонента и ее зависимость от температуры и давления.
Применение абсорбционных методов очистки, как правило, связано с использованием схем, включающих узлы абсорбции и десорбции. Десорбция растворенного газа (или регенерация растворителя) проводится либо снижением общего давления (или парциального давления) примеси, либо повышением температуры, либо использованием обоих приемов, одновременно.
В зависимости от конкретных задач применяются абсорберы различных конструкций: пленочные, насадочные, трубчатые и др. Наибольшее распространение получили скрубберы, представляющие собой насадку 1 размещенную в полости вертикальной колонны
Метод хемосорбции.
Основан на поглощении газов и паров твердыми или жидкими поглотителями с образованием малолетучих или малорастворимых химических соединений. Большинство реакций, протекающих в процессе хемосорбции, являются экзотермическими и обратимыми, поэтому при повышении температуры раствора образующееся химическое соединение разлагается с выделением исходных элементов.
Поглотительная способность хемосорбента почти не зависит от давления, поэтому хемосорбция более выгодна при небольшой концентрации вредностей в отходящих газах.
Примером хемосорбции может служить очистка газовоздушной смеси от сероводорода путем применения мышьяковощелочного, этаноламинового и других растворов.
Методы абсорбции и хемосорбции, применяемые для очистки промышленных выбросов, называются мокрыми методами. Преимущество абсорбционных методов заключается в возможности экономической очистки большого количества газов и осуществления непрерывных технологических процессов.
Основной недостаток мокрых методов состоит в том, что перед очисткой и после ее осуществления сильно понижается температура газов, что приводит в конечном итоге к снижению эффективности рассеивания остаточных газов в атмосфере
Метод адсорбции.
Основан на физических свойствах некоторых, твердых тел с ультрамикроскопической структурой селективно извлекать и концентрировать на своей поверхности отдельные компоненты из газовой смеси. В пористых телах с капиллярной структурой поверхностное поглощение дополняется капиллярной конденсацией.
Наиболее широко в качестве адсорбента используется активированный уголь. Он применяется для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов.
Конструктивно адсорберы выполняются в виде вертикальных, горизонтальных либо кольцевых емкостей, заполненных пористым адсорбентом, через который фильтруется поток очищаемого газа.
Фильтрация газа происходит через неподвижный (адсорберы периодического действия) или движущийся слой адсорбента. Наибольшее распространение получили адсорберы периодического действия, в которых период контактирования очищаемого газа с твердым адсорбентом чередуется с периодом регенерации адсорбента.
Установки периодического действия (с неподвижным слоем адсорбента) отличаются конструктивной простотой, но имеют низкие допускаемые скорости газового потока и, следовательно, повышенную металлоемкость и громоздкость. Процесс очистки в таких аппаратах носит периодический характер, т. е. отработанный, потерявший активность поглотитель время от времени заменяют либо регенерируют. Существенным недостатком таких аппаратов являются большие энергетические затраты, связанные с преодолением гидравлического сопротивления слоя адсорбента.
Каталитический метод
Этим методом превращают токсичные компоненты промышленных выбросов в вещества безвредные или менее вредные для окружающей среды путем введения в систему дополнительных веществ, называемых катализаторами. Каталитические методы основаны на взаимодействии удаляемых веществ с одним из компонентов, присутствующих в очищаемом газе, или со специально добавляемым в смесь веществом на твердых катализаторах.
Методы подбора катализаторов отличаются большим разнообразием, но все они базируются в основном на эмпирических или полуэмпирических способах. Об активности катализаторов судят по количеству продукта, получаемого с единицы объема катализатора, или по скорости каталитических процессов, при которых обеспечивается требуемая степень превращения.
Существенное влияние на скорость и эффективность каталитического процесса оказывает температура газа. Для каждой реакции, протекающей в потоке газа, характерна так называемая минимальная температура начала реакции, ниже которой катализатор не проявляет активности. Температура начала реакции зависит от природы и концентрации улавливаемых вредностей, скорости потока и типа катализатора. С повышением температуры эффективность каталитического процесса увеличивается.
Для поддержания необходимой температуры газа иногда к нему подмешивают (особенно в пусковой период) продукты сгорания от вспомогательной горелки, работающей на каком-либо высококалорийном топливе.
В последние годы каталитические методы очистки нашли применение для нейтрализации выхлопных газов автомобилей. Для комплексной очистки выхлопных газов - окисления продуктов неполного сгорания и восстановления оксида азота -применяют двухступенчатый каталитический нейтрализатор
Термический метод.
Достаточно большое развитие в отечественной практике нейтрализации вредных примесей, содержащихся в вентиляционных и других выбросах, имеет высокотемпературное дожигание (термическая нейтрализация). Для осуществления дожигании (реакций окисления) необходимо поддержание высоких температур очищаемого газа и наличие достаточного количества кислорода.
Термический метод обезвреживания получил более широкое распространение, так как некоторые вредные примеси трудно или невозможно полностью нейтрализовать другими методами из-за сложности их состава, низкой концентрации, а также из-за отсутствия эффективных средств улавливания. Он заключается в том, что все органические вещества полностью окисляются кислородом воздуха при высокой температуре до нетоксичных соединений. В результате выделяются минеральные продукты, вода, диоксид углерода, а также теплота, которые требуют дальнейшей их утилизации.
Метод термического окисления (дожига) органических веществ, содержащихся в отходящих газах, относится к энергоемким. Для поддержания необходимой температуры обезвреживания отходящих газов (800 -1200°С) используется высококалорийное топливо, поэтому преимущественно этот способ применяется для обезвреживания газов сложного состава и в тех случаях, когда возврат уловленных примесей в производство экономически нерентабелен.
Недостаток метода — необходимость высоких температур, что приводит к повышеннымэнергозатратам.
Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.
При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные веществав виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).
Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.
Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.
Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкимиэнергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.
Биохимические способы
Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.
Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.
Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.
В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.
К недостаткам биохимических методов следует отнести:
низкую скорость биохимических реакций, что увеличивает габариты оборудования;
специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей;
трудоемкость переработки смесей переменного состава.
Выбор метода очистки осуществляют на основе технико-экономических расчетов.
Архитектурно-планировочные мероприятия – комплекс приемов, включающих, выбор площадки для строительства промышленного предприятия, взаимное расположение предприятия и жилых кварталов, взаимное расположение цехов предприятия, организацию санитарно-защитных зон, устройство зеленых зон.
Промышленные предприятия должны быть расположены на ровном, возвышенном, хорошо проветриваемом месте, с подветренной стороны от жилых массивов. Цехи, выделяющие наибольшее количество загрязняющих веществ, следует располагать на краю производственной территории со стороны, противоположной жилому массиву. Взаимное расположение цехов должно быть таким, чтобы при направлении ветра в сторону жилых кварталов их выбросы не объединялись.
Промышленные предприятия должны быть отделены от жилых районов санитарно-защитной зоной (СЗЗ).
Размеры СЗЗ устанавливают по нормативам в зависимости от вредности и мощности предприятия в пределах от 50 до 1000 м.
Нормативные размеры санитарно-защитных зон:
Класс опасности предприятия Размер СЗЗ, м
1 1000
2 500
3 300
4 100
5 50
СЗЗ нельзя рассматривать как резервную территорию и использовать ее для расширения промышленной площадки. На территории СЗЗ допускается размещение объектов более низкого класса вредности, чем основное производство – складов, гаражей, автостоянок и т.д.
Территория СЗЗ должна быть благоустроена и озеленена, растения, используемые для озеленения, должны быть эффективными в санитарном отношении и достаточно устойчивыми к загрязнению атмосферы и почв,
При проектировании озеленения СЗЗ следует отдавать предпочтение созданию смешанных, древесно-кустарниковых насаждений, обладающих большой биологической устойчивостью и высокими декоративными достоинствами по сравнению с однородными посадками.
Инженерно-организационные мероприятия – снижение интенсивности движения транспорта, увеличение высоты труб, повышение скорости движения газов по этим трубам, что приводит к большему рассеивающему эффекту.
Для снижения интенсивности движения автотранспорта устраивают объездные и окружные дороги вокруг городов и населенных пунктов, устройство развязок пересечений дорог на разных уровнях, организация на основных магистралях движения по типу “зеленая волна”.
Увеличение высоты дымовых труб. Чем выше труба, тем лучше рассеивание пылегазовых выбросов в атмосфере. Необходимо отметить , что рассеивание вредных веществ в атмосфере является временным, вынужденным мероприятием, вызванным отсутствием методов очистки некоторых загрязнителей, а также тем, что существующие очистные аппараты не обеспечивают 100% очистку. Строительство высоких труб не решает проблему загрязнения, а переадресовывает свои загрязнения другим регионам. Самая высокая в мире дымовая труба высотой более 400м построена на медно-никелевом комбинате в Канаде. В нашей стране не рекомендуется строительство труб высотой более 150 м.
