Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2,3,4 ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
866.82 Кб
Скачать

Третий вопрос.

Распространение электротока — важный механизм клеточной сигнализации. С по­мощью распространения электоротока осуществляется функцио­нальная связь между различными участками мембраны в клетках, не генери­рующих ПД

Распространение электрохими­ческой реакции вызывается током, в свою очередь запускаемым этой реакцией, проводится и волна возбуждения по нервным волокнам. Проведение ПД — это вроде эстафеты, в которой каждый участок вдоль волокна выступает сначала как раздражаемый, а затем как раздражающий последующий участок. Меха­низм распространения ПД включает в себя два компонента: раздражающее действие катэлектротонического сигнала на соседний участок электровозбуди­мой мембраны и возникновение ПД в этом соседнем раздражаемом участке мембраны. В отличие от распространения электротона проведение возбуждения происходит без снижения амплитуды ПД и без снижения скорости. Проведение возбуждения в нервных волокнах зависит от амплитуды ПД и от пороговой деполяризации.

Скорость распространения ПД в тонких немиелинизированных (т. е. не имеющих миелинизированной оболочки) нервных волокнах, как и скорость распространения электротона, пропорциональна толщине волокна; она тем боль­ше, чем толще волокно. Это и понятно: при большом диаметре волокна снижа­ется сопротивление электрическому току вдоль оси волокна.

Пониманию электрохимической природы передачи возбуждения по нервам способствовали также опыты английского физиолога А. Ходжкина. Нервное волокно он располагал на изолированные металлические пластинки. Эта мани­пуляция скорости проведения не меняла. Однако замыкание пластинок, приво­дившее к уменьшению внешнего сопротивления, вызывало ускорение проведе­ния нервного импульса. Эффект наблюдался и в случае перерезки нервного волокна на соединенных пластинках. Казалось бы, чем это не протез нерва? Однако в отсутствие трофических влияний сомы, передаваемых с помощью аксоплазматического транспорта, периферическая культя нерва дегенерирует.

Японский физиолог И. Тасаки последовательно перерезал волокна в нерве лягушки и обнажал на небольшом участке одиночное волокно. Препарат поме­щался в питательный раствор на сдвинутые стеклянные пластинки. При раздвижении стекол волокно повисало в воздухе. Помещенное в этот воздушный мостик-изолятор, нервное волокно проводило возбуждение до тех пор, пока не высыхало. Если же высушить не все волокно, а только его маленькую часть, покрытую миелиновой оболочкой, то проводимость нерва легко восстановить, соединив любым проводником электрического тока два соседних перехвата Ранвье. В том же случае, когда высыхал сам перехват Ранвье, передача нервно­го импульса прекращалась.

Итак, этими экспериментами было убедительно показано, что участок между перехватами Ранвье — это электрический кабель. Очень тонкий, с чрезвычайно высоким продольным сопротивлением кабель, протоплазма которого тоже имеет высокое удельное сопротивление.

Четвертый вопрос.

Синапсами (от греч. synapsis — соприкосновение, соединение) называют специализированные контакты между нервными клет­ками или между нервными и эффекторными клетками, используемые для передачи сигналов.

Синапсы можно классифицировать: 1) по их местоположению и принадлеж­ности соответствующим клеткам — нервно-мышечные, нейро-нейрональные, а среди последних — аксосоматические, аксодендритические синапсы; 2) по знаку их действия — возбуждающие и тормозящие; 3) по способу передачи сигна­лов — электрические (в которых сигналы передаются электрическим током) и химические, в которых передатчиком, трансмиттером сигнала, или посредни­ком, медиатором, является то или иное физиологически активное вещество. Существуют и смешанные — электрохимические — синапсы.

Во всех синапсах содержатся такие компоненты, как пресинаптическая мембрана, постсинаптическая мембрана и разделяющая их синаптическая щель.

Электрические синапсы возбуждающего действия. Существование таких синапсов предполагали давно. Всем синапсам этого типа свойственны очень узкая синаптическая щель (около 5 нм) и очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран для проходящего через них - электрического тока.

Общими свойствами возбуждающих электрических синапсов являются: быстродействие (оно превосходит таковое химических синапсов); слабость следовых эффектов при передаче (это свойство делает электрические синапсы непригодными для интегрирования, суммации последовательных сигналов); высокая надежность передачи возбуждения. Химические синапсы возбуждающего действия. В отличие от электрических химические синапсы имеют относительно широкую синаптическую щель, составляющую 20-50 нм, и высокое сопротивление синаптических мембран. Другим характерным признаком химического синапса является наличие в пресинапти­ческой нервной терминали большого числа пузырьков — пресинаптических везикул диаметром около 50 нм. Эти везикулы заполнены медиатором — хими­ческим передатчиком (раздражителем).

Классическим представителем группы хими­ческих синап­сов является воз­буждающий нервно-мыше­чный синапс скелетной мус­кулатуры, дей­ствующий с помощью меди­атора ацетил­холина (Ах).

Суть работы химического синапса состоит в следующем. Пресинаптический ПД работает как инициатор нейросекреторного акта. При развитии ПД терминали (а также и при искусственной деполяризации) в нее ие среды входят ионы Са2+. Это стимулирует практически синхронный выброс медиатора в синаптическую щель из 100-200 пресинаптических везикул, каж­дая из которых содержит порцию — квант Ах. Большинство исследователей полагают, что этот выброс медиатора осуществляется путем экзоцитоза — опорожнения везикулы в синаптическую щель. Существует и другая точка зрения: квант медиатора аккумулирован в особых участках пресинаптической мембраны — операторах, которые и выбрасывают Ах в щель, а везикулы — это лишь депо Ах и других веществ.

Медиатор диффундирует к постсинаптической мембране, где для него существуют рецепторы (холинорецепторы — Хр). При взаимодействии Ах и Хр в последних открываются проницаемые для Na+ и К+ ионные каналы. Так как холинорецепторов и, соответственно, каналов много, сопротивление постсинаптической мембраны сильно падает, что приводит к ее частичной деполяризации, т. е. к развитию возбуждающего постсинаптического потенциала (ВПСП).

Таким образом, в отличие от электрических возбуждающие химические синапсы: 1) передают сигнал относительно медленно; 2) передают сигнал все­гда односторонне; 3) имеют достаточно высокую надежность передачи, кото­рая однако резко падает при некоторых изменениях в межклеточной среде, особенно при снижении [Са2+]; 4) обнаруживают значительные следовые про­цессы, что делает их способными суммировать (интегрировать) последова­тельные сигналы.

Синапсы тормозного действия. Синаптическим торможением обозначают влияние пресинаптической нервной клетки, прекращающее или предотвращающее возбуждение постсинаптической нервной клетки (или иной клетки-мишени).

В тормозном синапсе происходит изменение знака действия: пресинапти-ческое возбуждение (ПД) порождает постсинаптический тормозный процесс или состояние.

Известны два варианта тормозных синапсов: электрические (встречающи­еся очень редко) и химические (основной вариант).

Структура химического синапса тормозного действия (ширина синапти-ческой щели, наличие пресинаптических везикул) в общем соответствует таковой для возбуждающих химических синапсов. Существует предполо­жение, что тормозные пресинаптические окончания всегда снабжены особы­ми уплощенными везикулами, однако, видимо, это не является общим пра­вилом.

Рассмотрим физиологию химических синапсов тормозящего действия, на­пример, тормозный нервно-мышечный синапс рака, реализующий свое дей­ствие с помощью медиатора γ-аминомасляной кислоты (ГАМК). Общая схема работы этого синапса (роль пресинаптического ПД и Са2+) совпадает с рас­смотренной выше работой синапсов возбуждающего действия.

Общая характеристика синаптических медиаторов.Медиаторы составляют довольно разнородную группу веществ. Это моноамины: ацетилхолин, дофамин, норадреналин, серотонин, гистамин; аминокислоты: ГАМК, глутамат (глутаминовая кислота), глицин, таурин и др. Все эти вещества содер­жат в молекуле положительно заряженный атом азота. К медиаторам относится хорошо известное макроергическое вещество — АТФ (аденозинтрифосфат). И наконец, большая группа веществ — нейропептидов, — по-видимому, также может быть отнесена к медиаторам (хотя некоторые из них играют скорее роль гормонов, «модулято­ров» синаптической передачи, действующих через кровоток). Это вещество (субстанция) Р, метэнкефалин, лейэнкефалин, эндорфины, нейротензин, АКТГ (кортикотропин), ангиотензин, окситоцин, вазопрессин, вазоактивный интес-тинальный пептид, соматостатин, тиролиберин, бомбезин, холецистокининопо-добный пептид, карнозин.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]