- •1006 – «Теплоснабжение и теплотехническое оборудование»
- •1. Качество природных вод
- •1.1 Основные показатели качества воды
- •1.2 Нормы качества воды
- •2. Удаление из воды грубодисперсных и коллоидных примесей
- •2.1 Докотловая обработка воды
- •2.2 Сущность процесса коагуляции
- •2.3 Осветление воды в фильтрах-осветителях
- •2.4 Техническая характеристика осветлительных фильтров
- •2.5 Конструкция и принцип работы механического фильтра
- •3. Обработка воды методом осаждения
- •3.1 Физико-химические основы метода известкования
- •3.2 Схемы для умягчения воды известковым методом
- •3.4 Эксплуатация установок с осветлителями
- •4. Обработка воды методом ионного обмена
- •4.1 Ионный состав воды
- •4.2 Обработка воды методом ионного обмена
- •4.5 Схема н-катионирования с ''голодной'' регенерацией
- •4.7 Схема Na-Cl – катионирования
- •4.8 Принцип работы анионитных фильтров
- •4.9 Оборудование ионитной части водоподготовительных установок
- •5.Обработка пара и конденсата
- •5.1 Схема установки для обезмасливания пара и конденсата
- •5.2 Установки для обезжелезивания конденсата
- •5.3 Очистка конденсатов на намывных фильтрах
- •6. Магнитная обработка воды
- •6.1 Влияние магнитного поля на свойства воды и ее примесей
- •6.2 Аппараты для магнитной обработки воды
- •7. Удаление из воды коррозионно-агрессивных газов
- •7.1 Сущность процесса термической деаэрации
- •7.2 Технология удаления диоксида углерода в декарбонизаторе
- •7.3 Технология удаления газов в деаэраторах
- •8. Отложения в котлоагрегатах и теплообменниках, их предотвращение и удаление
- •8.1 Характеристика отложений паровых водогрейных котлов
- •8.2 Коррозия теплосилового оборудования и методы борьбы с ней
- •9. Загрязнение пара и способы борьбы с ним
- •9.1 Качество вырабатываемого пара
- •9.2 Механизм уноса капельной влаги паром
- •9.3 Требования к воде и пару. Методы получения чистого пара
- •9.4 Продувка парового котла
- •9.5 Сепарационные устройства котлов
- •9.6 Ступенчатое испарение
- •10.1 Принципиальные схемы обращения воды в тракте кэс и тэц
- •10.2 Методика расчета и выбор основного оборудования водоподготовительных установок
- •Литература
8.2 Коррозия теплосилового оборудования и методы борьбы с ней
Коррозией поверхности нагрева называют разрушение металла в результате химических и электро-химических процессов, протекающие под воздействием окружающей среды.
Различают общую и местную коррозию.
Общая характеризуется равномерным разрушением металла по всей поверхности. При местной коррозией разрушению подвергаются лишь отдельные небольшие участки.
Из местной коррозии наиболее распространена язвенная или точечная. Она проникает в глубину металла. Встречается на стенках водяного пространства барабанов котлов. Язвы большего размера встречаются на парообразующих трубах. При точечной коррозии образуются отверстия d<0,1-2мм на всю толщину трубы. Элементы пароводяных котлов, изготовленные из аустенической стали могут быть подвержены межкристаллитной коррозии, с образованием трещин. Наибольший вред поверхностям нагрева паровых котлов наносит местная коррозия из-за большой скорости проникновения в толщу металла.
В зависимости от характера процесса и коррозирующих агентов различают химическую и электрохимическую коррозию.
Химическая коррозия обусловлена химическими процессами, возникающие при взаимодействии металла с окружающей средой непосредственно. Такая коррозия наблюдается в пароперегревателе, где металл окисляется водяным паром, а также может возникать в парообразующих трубах при расслоении смеси и образовании свободного уровня 3Fe + 4H20 – Fe3O4 +4H2 . окисление железа перегретым паром наблюдается при температуре более 450ºС.
Электрохимическая коррозия возникает при воздействии на металл раствора электролита солей, кислот, щелочей и коррозионно-активных газов – кислорода и углекислого газа, и связана с прохождением электрического тока от одной части металла к другой. Возникновение тока объясняется тем, что при соприкосновении металла с электролитами на его поверхности образуются микрогальванические элементы, а это в свою очередь обусловлено электрохимической неоднородностью поверхности раздела металл-электролит, вследствие неоднородности металла, наличие на некоторых участках поверхности различных отложений, неодинаковых концентрациях электролита и неравномерном распределении коррозии. Опыт показывает, что разность потенциалов корродирующих элементов оказывается значительной только в начальный момент возникновения. Через короткий момент времени она резко снижается. Уменьшение начальной разности потенциалов электродов гальванического элемента называется поляризацией. Таким образом, поляризация приводит к уменьшению интенсивности протекания коррозионных процессов. Поляризацию уменьшают вещества, способствующие восстановлению электродного потенциала. Такие вещества называют деполяризаторами.
Различают анодную и катодную деполяризацию.
Анодная деполяризация характеризуется переходом металла в раствор с освобождением электронов, а катодная – приемом электронов и следовательно возрастанием электрического тока. Наиболее активным деполяризатором является растворимый в воде кислород. Наличие свободной углекислоты в воде также интенсифицирует протекание коррозионных процессов. Таким образом, предупреждением коррозии является деаэрация водой.
Кислородная коррозия чаще всего наблюдается на входных участках труб водяных экономайзеров и имеет язвенный характер. Увеличение скорости движения воды способствует отрыву пузырьков воздуха от стенок трубы, что существенно замедляет коррозию.
Кристаллидная коррозия характеризуется появлением в металле трещин по границам зёрен металла, и встречаются в основном в местах соединений котла.
Щелочная коррозия происходит в испарительных поверхностях нагрева. В результате происходит снижение механической прочности металла и образование в нем трещин.
Деаэрацией называется освобождение питательной воды от растворенного в ней воздуха, в состав которого входят кислород и двуокись углерода. Растворенные в воде, эти газы вызывают коррозию питательных труб и поверхностей нагрева котла.
Наибольшее распространение получили термические деаэраторы атмосферного типа низкого давления (0,02-0,025 МПа) и повышенного давления (0,6 МПа), а также вакуумные с давлением ниже атмосферного.
Термические деаэраторы служат для удаления из питательной воды растворенного в ней воздуха, путем нагрева ее до температуры кипения.
Воду обескислороживают также фильтрованием ее через слой стальных стружек, которые окисляются из-за растворенного в воде кислорода.
Контрольные вопросы:
1. Как характеризуются отложения паровых котлов.
2. Какую коррозию теплосилового оборудования различают.
3. С помощью каких способов и методов устраняют шламы, соли и накипи.
4. С помощью каких способов и методов снижают возникновения коррозии.
