Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВП-лекции.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
43.55 Mб
Скачать

4.7 Схема Na-Cl – катионирования

Этот метод основан на применении катионита в Na – форме и анионита в Cl – форме. Регенерация обоих ионов проводится раствором поваренной соли.

Cl – катионирование осуществляется после предварительного Na – катионирования. Обрабатываемая вода умягчается, в ней остаются только соли Na (NaНСО3, NaCl, Na2SO4, NaNO3 и т.д.). Затем при пропуске Na – катионированной воды через сильноосновный анионит в Cl – форме протекают реакции обмена анионов, содержащихся в Na – катионированной воде, на ионы Cl, находящихся в анионите:

RCl+NaHCO3RHCO3+NaCl

RCl+NaNO3RNO3+NaCl

2RCl+Na2SO4R2SO4+2NaCl

В результате сорбции иона HCO3- снижается щелочность обрабатываемой воды, она минимальна в начале рабочего цикла, а затем постоянно увеличивается. Конец рабочего цикла Cl – анионитового фильтра устанавливают по возрастанию щелочности фильтрата до заданной величины.

Практика показала, что применение слабоосновных анионитов в описанной технологии оказалось невозможным, так как после 2–3х регенераций раствором поваренной соли аниониты этого типа не восстанавливают обменоемкости. Применение сильноосновных анионитов сопряжено с необходимостью использования таких методов предварительной очистки, чтобы обрабатываемая вода не содержала железо и органических веществ.

В подземных водах часто содержится 2-х валентное железо и поэтому вода должна предварительно обезжелезиваться.

Поверхностные воды, для которых обязательна коагуляция, обычно, при необходимости снижения щелочности обрабатываются известью, после чего они не нуждаются в NaCl - катионировании.

Для регенерации анионита требуется поваренная соль высокого качества с минимальным содержанием примесей.

Условия применения данной технологии:

1.

2. мгэкв/л

В котельных агрегатах требуется глубоко умягченная вода, для чего применяется 2х-ступенчатое Na – катионирование. В случае Na-Cl – катионирования после Na – катионитных фильтров 1-й ступени, ставятся фильтры 2-й ступени, где Na – катионирование совмещается с Cl – катионированием. При этом вниз фильтра загружается катионит, а сверху помещается анионит. В процессе регенерации фильтра второй ступени раствором поваренной соли ионы Nа+ регенерируют катионит, а ионы Cl- анионит.

Расход поваренной соли - 100÷120 мг/м3 аниона. Регенерационный раствор готовиться на умягченной воде. Расход воды на отмывку фильтров – 3÷4 м33. Скорость фильтрования – 15÷20 м/ч. Количество фильтров - 2÷3.

Na-Cl – катионитный фильтр рассчитывается как Na – катионитный первой ступени, а необходимый объем анионита определяется по иону HCO3- 280÷300 гэкв/м3.

Слой анионита в фильтре минимально необходимый, число регенераций не более 2 раз в сутки. Слой катионита определяется как разность общей высоты слоя загрузки за вычетом высоты слоя анионита, но не менее 500 мм.

4.8 Принцип работы анионитных фильтров

Анионирование воды ведется в целях замены удаляемых анионов на ион гидроксила. При сочетании ОН-анионирования с Н-катионированием происходит удаление из воды как анионов, так и катионов в обмен на ионы ОН- и Н+, т.е. осуществляется химическое (ионитное) обессоливание воды. При фильтровании через слой анионита осуществляется сорбция анионов согласно реакциям:

ROH + Cl- ↔ RCl + OH-;

2ROH + SO42-R2SO4 + 2OH-.

Высокое значение рН в зоне обмена на анионите способствует диссоциации слабых кислот Н2СО3 и H2SiО3 и переводу их в ионизированное состояние, поэтому они также могут участвовать в реакциях анионного обмена, но лишь при использовании сильноосновных анионитов:

ROH + Н+ + НСО3-RНСО3 + Н2О;

ROH+ + НSiО3RНSiO3 + Н2О.

С учетом значений обменных емкостей слабоосновных и сильноосновных анионитов, а также способности только последних сорбировать анионы слабых кислот схемы химического обессоливания обычно содержат две ступени анионирования: на первой ступени в фильтры загружается слабоосновный анионит, удаляющий ионы SО42- и С1-; на второй ступени — сильноосновный анионит, предназначенный главным образом для обескремнивания воды.

Согласно ряду селективности в анионитном фильтре первой ступени сначала проскакивают в фильтрат ионы С1-, поэтому время выхода на регенерацию этого фильтра сопоставляют с концентрацией хлоридов; отключение анионитных фильтров второй ступени на регенерацию проводят на основании контроля фильтрата по содержанию кремниевой кислоты.

Регенерация анионитных фильтров производится 4 %-ным раствором NaOH, при этом происходят следующие реакции:

RCl + nOH- ↔ ROH + Cl- + (n-1)OH-;

R2SO4 + nOH- ↔ 2ROH + SO42- + (n-2)OH-;

RHCO3 + nOH- ↔ ROH + HCO3- + (n-1)OH-;

RHSiO3 + nOH- ↔ ROH + HSiO3- + (n-1)OH-.

И збыток щелочи при регенерации слабоосновных анионитов при поглощении ими анионов сильных кислот в 2 раза больше стехиометрического количества, т.е. равен 80 г/г-экв.

Рисунок 4.7 – Удельный расход NaOH на регенерацию анионита АВ-17 при обескремнивании воды:

1 – 4 – остаточное кремнийсодержание фильтрата соответственно 0,16 0,12, 0,10, 0,08 мг/дм3 при расходе NaOH 100, 120, 150, 200 кг/м3.

Для регенерации анионита, насыщенного анионами кремниевой кислоты, требуется повышенный избыток NaOH (п = 10—20), обеспечивающий последующее кремнийсодержание фильтрата на уровне 0,1 мг/дм (рис. 4.7). Для снижения удельного расхода щелочи регенерацию параллельно-точных анионитных фильтров первой и второй ступеней проводят последовательно либо используют противоточную или ступенчато-противоточную технологию.

Рисунок 4.8 – Принципиальная схема двухступенчатого химического обессоливания: Н1 и Н2 – катионитные фильтры первой и второй ступеней; А1 и А2 – анионитные фильтры первой и второй ступеней с загрузкой соответственно слабоосновными и сильноосновными анионитами; Д – декарбонизатор; БДВ – бак декарбонизированной (частично обессоленной) воды; H2SO4 – кислота для регенерации Н-катионитных фильтров; NaOH – едконатриевая щелочь для регенерации ОН-анионитных фильтров.

При проектировании технологии химического обессоливания учитывают, что наличие в Н-катионированной воде свободной углекислоты, более сильной, чем кремниевая, уменьшает кремнеемкость анионита и вызывает более ранний проскок ионов HSiО3 в фильтрат. Поэтому перед поступлением Н-катионированной воды на слой сильноосновного анионита из нее необходимо возможно более полно удалить СО2, для чего в схему включается декарбонизатор. Еще сильнее снижает кремнеемкость анионита наличие в Н-катионированной воде ионов Na , так как помимо истощения анионита анионами, уравновешивающими эти катионы, увеличивается концентрация в фильтрате противоионов (ОН-), что резко ухудшает глубину обескремнивания воды. С учетом приведенных фактов создаются, как правило, двухступенчатые схемы обессоливания, содержащие основное оборудование, приведенное на рис. 4.8.

Установки двухступенчатого химического обессоливания надежны в работе. Они обеспечивают высокое качество обработанной воды, отвечающее эксплуатационным нормам питательной воды барабанных котлов сверхвысокого давления.

Для очистки добавочной воды для прямоточных котлов и ядерных реакторов применяются трехступенчатые схемы химического обессоливания, в которых в качестве третьей ступени используются фильтры смешанного действия (ФСД). Загрузка ФСД состоит из смеси сильнокислотного катионита в Н-форме и сильноосновного анионита в ОН-форме. Переходящие в раствор в процессах ионного обмена на чередующихся зернах катионита и анионита ионы Н+ и ОН- образуют воду, выводя из зоны ионного обмена противоионы и способствуя этим углублению степени обессоливания воды до остаточной удельной электропроводимости менее 0,2 мкСм/см. Недостаток этой технологии заключается в необходимости тщательного перемешивания и разделения (при регенерации) составных частей смешанной загрузки.