- •1006 – «Теплоснабжение и теплотехническое оборудование»
- •1. Качество природных вод
- •1.1 Основные показатели качества воды
- •1.2 Нормы качества воды
- •2. Удаление из воды грубодисперсных и коллоидных примесей
- •2.1 Докотловая обработка воды
- •2.2 Сущность процесса коагуляции
- •2.3 Осветление воды в фильтрах-осветителях
- •2.4 Техническая характеристика осветлительных фильтров
- •2.5 Конструкция и принцип работы механического фильтра
- •3. Обработка воды методом осаждения
- •3.1 Физико-химические основы метода известкования
- •3.2 Схемы для умягчения воды известковым методом
- •3.4 Эксплуатация установок с осветлителями
- •4. Обработка воды методом ионного обмена
- •4.1 Ионный состав воды
- •4.2 Обработка воды методом ионного обмена
- •4.5 Схема н-катионирования с ''голодной'' регенерацией
- •4.7 Схема Na-Cl – катионирования
- •4.8 Принцип работы анионитных фильтров
- •4.9 Оборудование ионитной части водоподготовительных установок
- •5.Обработка пара и конденсата
- •5.1 Схема установки для обезмасливания пара и конденсата
- •5.2 Установки для обезжелезивания конденсата
- •5.3 Очистка конденсатов на намывных фильтрах
- •6. Магнитная обработка воды
- •6.1 Влияние магнитного поля на свойства воды и ее примесей
- •6.2 Аппараты для магнитной обработки воды
- •7. Удаление из воды коррозионно-агрессивных газов
- •7.1 Сущность процесса термической деаэрации
- •7.2 Технология удаления диоксида углерода в декарбонизаторе
- •7.3 Технология удаления газов в деаэраторах
- •8. Отложения в котлоагрегатах и теплообменниках, их предотвращение и удаление
- •8.1 Характеристика отложений паровых водогрейных котлов
- •8.2 Коррозия теплосилового оборудования и методы борьбы с ней
- •9. Загрязнение пара и способы борьбы с ним
- •9.1 Качество вырабатываемого пара
- •9.2 Механизм уноса капельной влаги паром
- •9.3 Требования к воде и пару. Методы получения чистого пара
- •9.4 Продувка парового котла
- •9.5 Сепарационные устройства котлов
- •9.6 Ступенчатое испарение
- •10.1 Принципиальные схемы обращения воды в тракте кэс и тэц
- •10.2 Методика расчета и выбор основного оборудования водоподготовительных установок
- •Литература
4.5 Схема н-катионирования с ''голодной'' регенерацией
При обычном Н – катионировании регенерация проводится с удельным расходом кислоты в 2-2,5 раза больше теоретически необходимого, который отвечает процессу эквивалентного обмена катионов между раствором и катионитом. Избыток кислоты, не участвующей в реакциях обмена ионов, сбрасывается из фильтров вместе с продуктами регенерации. При голодной регенерации Н-катионитового фильтра удельный расход кислоты равен его теоретическому расходу (удельному), т. е. 1 гэкв = 1 гэкв. Все ионы водорода регенерационного раствора при этом полностью задерживаются катионитом, вследствие чего сбрасываемый регенерационный раствор и отмывочные воды не содержат кислоты.
В отличие от обычных Н-катионитовых фильтров, в которых весь слой катионита при регенерации переводится в Н-форму при голодном режиме в Н-форму переводятся только верхние слои, а нижние слои катионита остаются в солевых формах и содержат катионы Ca2+, Mg2+, и Na+. В верхних слоях катионита отрегенерированного голодной нормой кислоты при работе фильтра имеют место все реакции ионного обмена приведенные выше для Н – катионирования.
В ниже лежащих неотрегенерированных слоях катионитные ионы водорода образовавшихся минеральных кислот обмениваются на ионы Ca2+, Mg2+, и Na+ по уравнениям:
CaR2 + 2HCl → 2HR + CaCl2
NaR + HCl → HR + NaCl
MgR2 + H2SO4 → 2HR + MgSO4
Происходит нейтрализация кислотности воды и при этом восстанавливается ее некарбонатная жесткость (постоянная жесткость), а зона слоя, содержащего ионы водорода смещается постепенно к низу.
Так как содержащаяся в воде угольная кислота является слабой, в реакциях ионного обмена она может участвовать только после удаления сильных кислот. В самых нижних слоях фильтра этот процесс завершится до полного восстановления карбонатной жесткости не успевает, поэтому фильтрат имеет малую карбонатную жесткость численно равную щелочности и содержит много углекислоты. К моменту окончания рабочего цикла фильтра ионы водорода, введенные в катионит при регенерации, полностью удаляются из катионита в виде H2CO3, который находится в равновесии с Д- гидратированной формой СО2:
H2CO3 ↔ H2O + CO2
Технология Н – катионирования с «голодной» регенерацией обеспечивает получение фильтрата с минимальной щелочностью (исключение сброса кислых стоков при регенерации и кислого фильтрата в рабочем цикле). Данная технология рекомендована для обработки природных вод определенного состава и при использовании катионита средне или слабокислотного типа при условии правильного осуществления режима регенерации. При непостоянстве качества исходной воды, неточном соблюдении рекомендаций по применению рассматриваемой технологи Н – катионирования во избежание колебаний щелочности и «проскоков» кислого фильтрата после Н-катионитных фильтров с голодной регенерацией в схеме водоподготовительной установки (ВПУ) устанавливаются буферные – нерегенерируемые фильтры с высотой слоя катионита 2 м и скоростью фильтрования до 40 м/ч. К буферным фильтрам не допускается подвод регенерационного раствора кислоты, взрыхляющая промывка осуществляется осветленной водой.
Рисунок 4.5 - Схема противоточного ионитового фильтра типа ФИПр:
1 – подвод исходной воды; 2 – отвод обработанной воды; 3 – 5 – подвод промывочной воды соответственно общий, в нижнее распределительное устройство (РУ) и блокирующее РУ; 6 – отвод промывочной воды; 7 – 9 – подводы регенерационного раствора соответственно общий, в нижнее РУ и в блокирующее РУ; 10, 11 – дренажи; 12 – гидрозагрузка; 13 – гидровыгрузка; 14, 15 – подвод воды для взрыхления в среднее и нижнее РУ.
Расход реагента существенно снижается, а качество фильтрата повышается при применении противоточной регенерации ионитного фильтра, схема которого приведена на рис. 4.5.
К онструкция фильтра, изготавливаемого на ТКЗ, предусматривает, кроме верхнего и нижнего распределительных устройств, также среднее и блокирующее РУ, расположенные соответственно на глубине 0,3 м и у входной поверхности слоя ионита. Среднее распределительное устройство предназначено для равномерного сбора отработанного регенерационного раствора и отмывочной воды, подаваемых через нижнее (80 %) и блокирующее (20 %) РУ. Блокирующее РУ служит для подвода раствора реагента или отмывочной воды, используемых для регенерации и зажатия блокирующего слоя ионита. Взрыхлению подвергается только блокирующий слой ионита, а через 10—20 фильтроциклов взрыхляется весь слой.
Рисунок 4.6 - Схема двухпоточного-противоточного ионитового фильтра типа ФИПр-2П: 1 – подвод исходной воды; 2 – отвод обработанной воды или отработанного регенерационного раствора и отмывочной воды; 3 – подвод исходной воды или отвод отработанной воды; 4 – подвод регенерационного раствора; 5 – подвод воды для взрыхления; 6 – подвод регенерационного раствора и отмывочной воды; 7 – подвод отмывочной воды; 8 – отвод отработанного регенерационного раствора и отмывочной воды; 9 – дренаж; 10 – подвод взрыхляющей воды, дренаж.
Промежуточным вариантом между противоточной и прямоточной регенерациями является двухпоточно-противоточная регенерация, осуществляемая в фильтре, представленном на рис. 4.6. Среднее РУ фильтров, загруженных анионитом или катионитом, заглублено в них на 0,6 и 1,0 м соответственно. Конструкция двухпоточно-противоточного фильтра позволяет использовать его как в режиме однопоточного фильтрования и двухпоточной регенерации, так и в режиме двухпоточного фильтрования и однопоточной регенерации. При любом режиме работы в выходном слое ионита осуществляется принцип противоточного ионирования, при котором обрабатываемая вода перед выходом из фильтра соприкасается с хорошо отрегенерированными слоями ионита, благодаря чему обеспечивается высокое качество фильтрата при сокращенных расходах реагентов на регенерацию ионита. При работе фильтра в режиме двухпоточного фильтрования взрыхлению подвергается весь слой ионита, при однопоточном фильтровании — только верхний слой, а взрыхление всего слоя производится через 10—20 фильтроциклов. При режиме однопоточного фильтрования и двухпоточной регенерации 40 % раствора реагента пропускается через верхний слой ионита, 60 % — через нижний. При режиме двухпоточного фильтрования и однопоточной регенерации весь регенерационный раствор проходит через оба слоя ионита сверху вниз.
4.6 NH4 – катионирование
При NH4 – катионировании обрабатываемая вода фильтруется через слой катионита, отрегенерированного солями аммония (NH4Cl или (NH4)2SO4). Содержащийся в катионите ион аммония обменивается на катионы Са, Mg, и Na, присутствующие в природной воде, при этом протекают реакции:
2NH4R + Ca(HCO3)2 → CaR2 + 2NH4HCO3
2NH4R + Mg(HCO3)2 → MgR2 + 2NH4HCO3 (гидрокарбонат аммония)
2NH4R + CaCl2 → CaR2 + 2NH4Cl
2NH4R + MgSO4 → MgR2 + (NH4)2SO4
NH4R + NaCl → NaR + NH4
Как видно из реакций обмена в фильтрате образуются соли аммония, соответствующие имеющимся в воде анионам. NH4 – катионированная вода умягчается, а ее щелочность такая же как у исходной воды. При нагревании воды в котле соли аммония разлагаются:
NH4HCO3 →(t) NH3 + H2O + CO2
NH4Cl →(t) NH3 + HCl
(NH4)2SO4→(t) 2NH3 + H2SO4
Образующийся при разложении аммиак и углекислотная кислота уносятся паром, а в котловой воде остаются соляная и серная кислоты. Во избежание коррозии металла труб под действием кислот применение NH4 – катионирования в энергетической практике всегда сочетается с Na – катионированием. В процессе Na – катионирования идет превращение гидрокарбоната Na в бикарбонат, который в котле разлагается с образованием соды и едкого натрия:
2NaHCO3 → Na2CO3 + H2O + CO2
H2O + Na2CO3 →(t) 2NaOH + CO2
Углекислота уносится паром, а Na2CO3 и NaOH нейтрализуют кислотность воды, появляющуюся при термическом разложении солей аммония. Чтобы предотвратить чрезмерное снижение щелочности котловой воды в сочетании NH4 – катионирования с Na – катионированием осуществляют с расчетом получить в умягченной воде концентрацию ионов HCO3- на 0,3 – 0,7 мгэкв/л больше концентрации ионов аммония. Пар котлов питающихся NH4, Na – катионированной водой всегда содержит большое количество аммиака. Учитывая это обстоятельство NH4 – катионированной воды не следует применять, когда в тепловой схеме котельной установки имеются аппараты и детали из латуни или медных сплавов или когда пар используется для систем горячего водоснабжения или открытых систем теплоснабжения. На всех предприятиях, где в паре не должен содержаться аммиак от NH4 – катионирования отказываются.
