- •1006 – «Теплоснабжение и теплотехническое оборудование»
- •1. Качество природных вод
- •1.1 Основные показатели качества воды
- •1.2 Нормы качества воды
- •2. Удаление из воды грубодисперсных и коллоидных примесей
- •2.1 Докотловая обработка воды
- •2.2 Сущность процесса коагуляции
- •2.3 Осветление воды в фильтрах-осветителях
- •2.4 Техническая характеристика осветлительных фильтров
- •2.5 Конструкция и принцип работы механического фильтра
- •3. Обработка воды методом осаждения
- •3.1 Физико-химические основы метода известкования
- •3.2 Схемы для умягчения воды известковым методом
- •3.4 Эксплуатация установок с осветлителями
- •4. Обработка воды методом ионного обмена
- •4.1 Ионный состав воды
- •4.2 Обработка воды методом ионного обмена
- •4.5 Схема н-катионирования с ''голодной'' регенерацией
- •4.7 Схема Na-Cl – катионирования
- •4.8 Принцип работы анионитных фильтров
- •4.9 Оборудование ионитной части водоподготовительных установок
- •5.Обработка пара и конденсата
- •5.1 Схема установки для обезмасливания пара и конденсата
- •5.2 Установки для обезжелезивания конденсата
- •5.3 Очистка конденсатов на намывных фильтрах
- •6. Магнитная обработка воды
- •6.1 Влияние магнитного поля на свойства воды и ее примесей
- •6.2 Аппараты для магнитной обработки воды
- •7. Удаление из воды коррозионно-агрессивных газов
- •7.1 Сущность процесса термической деаэрации
- •7.2 Технология удаления диоксида углерода в декарбонизаторе
- •7.3 Технология удаления газов в деаэраторах
- •8. Отложения в котлоагрегатах и теплообменниках, их предотвращение и удаление
- •8.1 Характеристика отложений паровых водогрейных котлов
- •8.2 Коррозия теплосилового оборудования и методы борьбы с ней
- •9. Загрязнение пара и способы борьбы с ним
- •9.1 Качество вырабатываемого пара
- •9.2 Механизм уноса капельной влаги паром
- •9.3 Требования к воде и пару. Методы получения чистого пара
- •9.4 Продувка парового котла
- •9.5 Сепарационные устройства котлов
- •9.6 Ступенчатое испарение
- •10.1 Принципиальные схемы обращения воды в тракте кэс и тэц
- •10.2 Методика расчета и выбор основного оборудования водоподготовительных установок
- •Литература
4. Обработка воды методом ионного обмена
Ионный состав воды. Обработка воды методом ионного обмена.
Конструкция и принцип работы катионитового фильтра; особенности работы Na, H, NH4 – катионитных фильтров, конструкция и принцип работы анионитных фильтров. Процесс восстановления ионных фильтров; схема работы обессоливающей установки, схема нейтрализации сточных вод.
4.1 Ионный состав воды
Сущность ионного обмена заключается в способности специальных материалов (ионитов) изменять в желаемом направлении ионный состав обрабатываемой воды. Иониты представляют собой нерастворимые высокомолекулярные вещества, которые благодаря наличию в них специальных функциональных групп способны к реакциям ионного обмена, т.е. они способны поглощать из раствора положительные или отрицательные ионы в обмен на эквивалентные количества других ионов, содержащихся в ионите, имеющих заряд того же знака. По знаку заряда обменивающихся ионов иониты разделяются на катиониты и аниониты. Способность ионитов к обмену ионами с раствором определяется их строением. Иониты состоят из нерастворимой твердой основы (матрицы), которая при помещении ее в воду способна увеличивать свой объем в 1,1—2,0 раза за счет взаимодействия с полярными молекулами Н2О, что дает возможность взаимной диффузии обменивающихся ионов после завершения синтеза и превращения матрицы в ионит.
Полученную матрицу обрабатывают химическими реагентами, прививая к ней специальные функциональные группы, замещающие в бензольных кольцах ионы водорода и способные к диссоциации в растворах. Фиксированный на матрице ион (часть функциональной группы) определяет возникновение заряда и носит название потенциалообразующего. Заряд каркаса компенсируется зарядом ионов противоположного знака, называемых противоионами (рис. 4.1). Противоионы образуют диффузный слой, они подвижны вокруг матрицы и могут быть заменены другими ионами с зарядом того же знака. Появление потенциалообразующих ионов и противо-ионов может происходить не только за счет диссоциации функциональных групп, но и за счет адсорбции функциональными группами из раствора ионов с каким-либо знаком заряда. Обычно матрицу с фиксированными ионами обозначают символом R, а противоион — химическим символом, например, RNa — катионит с обменным ионом (противоионом) натрия, a ROH — анионит с обменной гидроксильной группой.
Рисунок 4.1 – Структуры элементов объема ионитов:
а – катионит; б – анионит; 1 – матрица; 2 – потенциалообразующие фиксированные ионы; 3 – ионы диффузионного слоя.
Вода всегда электрически нейтральна, поэтому сумма концентраций содержащихся ней катионов равна сумме концентраций анионов при условии, что они выражены в мгэкв/л:
∑СК = ∑СА
Это уравнение называется уравнением электронейтральности раствора, которым пользуются при проверке правильности анализа воды.
Таблица 4.1 – Ионный состав воды
-
Катионы
Анионы
Водород H+
Гидроксильный OH-
Натрий Na+
Бикарбонатный HCO3-
Калий K+
Карбонатный CO32-
Аммоний NH4+
Нитритный NO2-
Кальций Ca2+
Нитратный NO3-
Магний Mg2+
Хлоридный Cl-
Медь Cu2+
Фторидный F-
Железо Fe2+
Сульфатный SO42-
Железо Fe3+
Силикатный SiO32-
Алюминий Al3+
Ортофосфатный PO43-
Гидросульфидный HS-
Двухвалентное железо встречается в подземных водах чаще всего в виде бикарбонатов Fe(HCO3)2. Соединения 3-хвалентного железа встречаются в поверхностных водах, и находится в коллоидном состоянии Fe(OH3). Если в природных водах содержаться соединения азота, а именно ионы аммония NH4+, нитрат и нитрит ионы NO3- ,NO2- это свидетельствует о том, что источник водоснабжения загрязнен хозяйственно бытовыми стоками. Химически чистая вода является очень слабым электролитом. Примерно 1 из 10 млн. молекул диссоциирует на ионы:
H2O↔H+ + OH-
Отрицательный логарифм концентрации ионов водорода называется водородным показателем:
pH = -lg[H+]
Для химически чистой воды pH = 7. В зависимости от значения pH водного раствора оценивается реакция среды. При 1 ≤ pH < 3 – реакция среды кислая; 4 < pH < 6 – слабо кислая; pH = 7– нейтральная; 8 < pH < 10 – слабощелочная; 11 < pH ≤ 14 – щелочная.
Вода для питьевых целей по ГОСТ 2874-82 имеет pH =6,5…9,0.
