Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АНАТОМИЯ (2).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
39.27 Кб
Скачать

15) Мочеобразование – это процесс образования мочи в почках. Плазма крови, фильтруясь сквозь почечные клубочки и их стенки капилляров, образует так называемую первичную мочу. После того как первичная моча проходит по почечным каналам, происходит реабсорбция, то есть всасывание воды и растворенных в первичной моче веществ обратно в кровь. В итоге образуется концентрированная моча, которая и выводиться организмом.

Принято выделять три фазы образования мочи: фильтрация, реабсорбция и секреция.

Первый этап – фильтрационный. Он заключается в образовании первичной мочи. Процесс фильтрации начинается в том месте, где соприкасаются капилляры мальпигиева клубка со стенкой, так называемой капсулы.

При этом давление в капсуле намного выше, чем в сосудах. Это обеспечивает протекание самого процесса фильтрации. Перенос фильтрата из капилляров в капсулу осуществляет сердце. Падение кровяного давления ведет к падению фильтрационного. При недостаточном уровне давления фильтрация мочи прекратится, но образование мочи будет продолжаться.

Второй этап – реабсорбция. Фильтрат проходит через стенки почечных каналов, состоящих из слоя кубических и плоских клеток. При этом фильтрат отдает большую часть воды, аминокислоты и другие вещества, в которых нуждается организм. Все эти вещества секретируются в кровяное русло. Это становится возможным, благодаря соединению артериолы с сетью капилляров, окружающих извитые каналы. При недостатке кислорода в почке, реабсорбция может нарушиться или вообще прекратиться.

Кроме обратного всасывания, в почечных канальцах протекает процесс канальцевой секреции (выделение определенных веществ в просвет канальцев). Моча, непосредственно выведенная из организма, называется конечной мочой.

16) Основной структурно-функциональной единицей почки является нефрон, в котором происходит образование мочи. В зрелой почке человека содержится около 1 - 1,3 млн. нефронов. Нефрон состоит из нескольких последовательно соединенных отделов (рис.1). Начинается нефрон с почечного (мальпигиева) тельца, которое содержит клубочек кровеносных капилляров. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена. Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев. Проксимальный отдел канальцев начинается извитой частью, которая переходит в прямую часть канальца. Клетки проксимального отдела имеют щеточную каемку из микроворсинок, обращенных в просвет канальца. Затем следует тонкая нисходящая часть петли Генле, стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона. Дистальный отдел канальцев состоит из восходящей части петли Генле и может иметь тонкую и всегда включает толстую восходящую часть. Этот отдел поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца располагается в коре почки и обязательно соприкасается с полюсом клубочка между приносящей и выносящей артериолами в области плотного пятна. Дистальные извитые канальцы впадают в коре почек в собирательные трубочки. Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

1 - клубочек; 2 - проксимальный извитой каналец; 3 - нисходящая часть петли нефрона; 4 - восходящая часть петли нефрона; 5 - дистальный извитой каналец; б - собирательная трубка.

17) Роль печени в углеводном обмене: определяется прежде всего ее участием в процессах синтеза и распада гликогена. Это имеет большое значение для регуляции уровня глюкозы в крови. Кроме того, в печени активно протекают процессы взаимопревращения моносахаридов. Галактоза и фруктоза превращается в глюкозу, а глюкоза может стать источником для синтеза фруктозы.

В печени протекает также процесс глюконеогенеза, при котором из неуглеводных веществ — молочной кислоты, глицерина и гликогенных аминокислот — происходит образование глюкозы. Печень участвует и в регуляции углеводного обмена путем контроля за уровнем инсулина в крови, так как в печени содержится фермент инсулиназа, расщепляющая инсулин в зависимости от потребности организма.

Энергетические потребности самой печени обеспечиваются за счет распада глюкозы, во-первых, по анаэробному пути с образованием лактата и, во-вторых, по пептозному пути. Значение указанных процессов заключается не только и образовании НАДФН2 для различных биосинтезов, но и возможности использовать продукты распада углеводов в качестве исходных веществ для различных обменных процессов

18) Характеризуется тем, что в ней активно протекают синтез и распад белков, имеющих важное значение для организма. В печени синтезируется за сутки около 13-18 г белков. Из них альбумины, фибриноген, протромбин образуются только и печени. Кроме того, здесь синтезируется до 90% альфа-глобулинов и около 50% гамма-глобулинов организма. В связи с этим при заболеваниях печени в ней либо снижается синтез белков и это приводит к уменьшению количества белков крови, либо происходит образование белков с измененными физико-химическими свойствами, в результате чего понижается коллоидная устойчивость белков крови и они легче, чем в норме, выпадают в осадок при действии осадителей (солей щелочных и щелочноземельных металлов, тимола, сулемы и др.). Печень является основным местом синтеза белков, обеспечивающих процесс свертывания крови (фибриногена, протромбина и др.). Нарушение их синтеза, как и недостаточность витамина К, развивающаяся вследствие нарушения желчеотделения и желчевыделения, приводят к геморрагическим явлениям.

Активно протекающие в печени процессы превращений аминокислот (переаминирование, дезаминирование и др.) при ее тяжелых поражениях существенно изменяются, что характеризуется увеличением концентрации свободных аминокислот в крови и выделением их с мочой (гипераминоацидурии). В моче также могут быть обнаружены кристаллы лейцина и тирозина.Образование мочевины происходит только в печени и нарушение функций гепатоцитов приводит к увеличению ее количества в крови, что оказывает отрицательное влияние на весь организм и может проявиться, например, печеночной комой, нередко заканчивающейся гибелью больного.

12) Гемостаз - совокупность физиологических процессов, направленных на предупреждение и остановку кровотечений, а также поддержания жидкого состояния крови.

Свертывание крови - жизненно важное физиологическое приспособление. Образование тромба при нарушении целостности сосуда - это защитная реакция организма, направленная на предохранение от кровопотери. Механизмы образования кровоостанавливающего тромба и патологического тромба (закупоривающего кровеносный сосуд, питающий внутренние органы) очень схожи. Весь процесс свертывания крови можно представить как цепь взаимосвязанных реакций, каждая из которых заключается в активации веществ, необходимых для следующего этапа.

Процесс свертывания крови находится под контролем нервной и гуморальной системы, и непосредственно зависит от согласованного взаимодействия по меньшей мере 12 специальных факторов (белков крови).

Свертывающая система состоит из трех компонентов:

свертывающая система - отвечает за процессы свертывания (коагуляции) крови;

противосвертывающая система - отвечает за процессы, препятствующие свертыванию (антикоагуляции) крови;

фибринолитическая система - отвечает за процессы фибринолиза (растворения образовавшихся тромбов).

Механизм свертывания крови

В современной схеме свертывания крови выделяют четыре фазы:

Протромбинообразование (контактно-калликреин-киниикаскадная активация) - 5..7 минут; Тромбинообразование - 2..5 секунд; Фибринообразование - 2..5 секунд;

Посткоагуляционная фаза (образование гемостатически полноценного сгустка) - 55..85 минут.

14) К форменным элементам крови относятся эритроциты, лейкоциты, тромбоциты (кровяные пластинки)

эритроциты –три основные функции: транспортная, защитная и регуляторная.Транспортная функция эритроцитов заключается в том, что они транспортируют О2 и CО2, аминокислоты, полипептиды, белки, углеводы, ферменты, гормоны, жиры, холестерин, различные биологически активные соединения (простагландины, лейкотриены и др.), микроэлементы и др.Защитная функция эритроцитов заключается в том, что они играют существенную роль в специфическом и неспецифическом иммунитете и принимают участие в сосудисто-тромбоцитарном гемостазе, свертывании крови и фибринолизе.Регуляторную функцию эритроциты осуществляют благодаря содержащемуся в них гемоглобину; регулируют рН крови, ионный состав плазмы и водный обмен. Проникая в артериальный конец капилляра, эритроцит отдает воду и растворенный в ней О2 и уменьшается в объеме, а переходя в венозный конец капилляра, забирает воду, СО2 и продукты обмена, поступающие из тканей и увеличивается в объеме.

- лейкоциты - клетки иммунной системы;

- тромбоциты - способствуют свёртыванию крови.

13) Белки плазмы. И их роль в организме.1. Белки обусловливают возникновение онкотического давления (см. ниже), величина которого важна для регулирования водного обмена между кровью и тканями. 2. Белки, обладая буферными свойствами, поддерживают кислотно-щелочное равновесие крови. 3. Белки обеспечивают плазме крови определенную вязкость, имеющую значение в поддержании уровня артериального давления. 4. Белки плазмы способствуют стабилизации крови, создавая условия, препятствующие оседанию эритроцитов. 5. Белки плазмы играют важную роль в свертывании крови. 6. Белки плазмы крови являются важными факторами иммунитета, т. е. невосприимчивости к заразным заболеваниям.

В плазме крови содержится .несколько десятков различных белков, которые составляют три основные группы: альбумины, глобулины и фибриноген. Для разделения белков плазмы с 1937 г. применяется метод электрофореза, основанный на том, что различные белки обладают неодинаковой подвижностью в электрическом поле. Гамма-глобулины имеют важное значение в защите организма от вирусов, бактерий и их токсинов. Это обусловлено тем, что так называемые антитела являются в основном ү-глобулинами. Введение их больным повышает сопротивляемость организма по отношению к инфекциям. В последнее время в плазме крови найден белковый комплекс, играющий аналогичную роль,— пропердин.Соотношение между количеством различных белковых фракций при некоторых заболеваниях изменяется и поэтому исследование белковых фракций имеет диагностическое значение.Главным местом образования белков плазмы крови является печень. Она синтезирует альбумины и фибриноген. Глобулины же синтезируются не только в печени, но и в костном мозгу, селезенке, лимфатических узлах, т. е. в органах, относящихся к ретикуло-эндотелиальной системе организма. Во всей плазме крови содержится примерно 200—300 г белков. Обмен их происходит быстро благодаря непрерывному синтезу и распаду.

11) Факторы, влияющие на систему кровообращения во время наркоза и операции.

10) Основные функции сердца

Автоматизм - способность сердца спонтанно вырабатывать импульсы возбуждения. В норме наибольшим автоматизмом обладают клетки синусового узла, расположенного в правом предсердии.

Проводимость - способность сердца проводить импульсы от места их возникновения до сократительного миокарда. В норме импульсы проводятся от синусового узла к мышце предсердий и желудочков. Наибольшей проводимостью обладает проводящая система сердца.

Возбудимость - способность сердца возбуждаться под влиянием импульсов. Во время возбуждения сердца образуется электрический ток, который регистрируется гальванометром в виде электрокардиограммы.

Сократимость - способность сердца сокращаться под влиянием импульсов.Тоничность - способность сердца сохранять свою форму во время диастолы.Важными электрофизиологическими процессами является рефрактерность и абберантность.Рефрактерность - это невозможность возбужденных клеток миокарда снова активизироваться при возникновении дополнительных импульсов. Различают абсолютную рефрактерность и относительную рефрактерность. Во время абсолютной рефрактерности на сердце не влияют импульсы любой силы. Во время относительного рефрактерного периода сердце способно к возбуждению, если сила поступающего импульса больше обычного. Абсолютный рефрактерный период соответствует на ЭКГ комплексу QRS и сегменту ST. Относительный рефрактерный период соответствует зубцу Т.Абберантность или абберантное проведение - патологическое, необычное проведение импульса по предсердиям и желудочкам