- •Камышинский технологический институт (филиал)
- •Введение
- •1. Методология и принципы проектирования сложных технических систем
- •1.1. Общие сведения о процессе проектирования
- •1.2. Принципы, уровни и аспекты проектирования, пути повышения его эффективности
- •1.3. Структура и составные части процесса проектирования. Нисходящее и восходящее проектирование
- •1.4. Классификация типовых процедур проектирования
- •1.5. Типичная последовательность проектных процедур
- •1.6. Общая схема процесса проектирования
- •1.7. Проектирование сложных технических систем. Свойства и характеристики сложных технических систем
- •1.8. Виды и формы представления стс
- •1.9. Математические модели стс
- •1.10. Содержание процесса проектирования стс
- •1.11. Организация и принципы системного проектирования стс
- •1.12. Математическая постановка задачи принятия проектных решений
- •1.13. Типовая структура процесса принятия проектных решений
- •Вопросы для самоконтроля
- •2. Принципы, методология и методика построения сапр
- •2.1. Основные аспекты автоматизированного проектирования. Требования к объектам проектирования в сапр
- •2.2. Технологический процесс проектирования в условиях функционирования сапр
- •2.3. Основные принципы создания сапр
- •2.4. Классификация сапр
- •2.5. Состав и структура сапр
- •2.6. Математическое обеспечение сапр
- •2.7. Лингвистическое обеспечение сапр
- •2.8. Программное обеспечение сапр как объект проектирования
- •2.9. Информационное обеспечение сапр как объект проектирования
- •2.10. Техническое обеспечение сапр
- •2.11. Методика разработки сапр
- •2.12. Организация эксплуатации, обслуживания и развития сапр
- •2.13. Определение характеристик и оценка качества сапр
- •2.14. Технико-экономическая эффективность сапр
- •Вопросы для самоконтроля
- •3. Методологические основы и аспекты автоматизированного проектирования сложных технических систем
- •3.1. Автоматизация функционального проектирования. Задачи функционального проектирования
- •3.2. Одновариантный анализ
- •3.3. Многовариантный анализ
- •3.4. Процедуры параметрической оптимизации
- •3.5. Имитационное моделирование в функциональном проектировании. Понятия имитационного моделирования
- •3.6. Организация процесса имитационного моделирования
- •3.7. Автоматизация конструкторского проектирования. Классификация задач конструкторского проектирования
- •3.8. Формализация задач топологического проектирования
- •3.9. Геометрическое моделирование и синтез форм деталей
- •3.10. Оценка результатов конструкторского проектирования на основе функциональных моделей
- •3.11. Автоматизация технологического проектирования. Основные задачи и модели автоматизации технологического проектирования
- •Вопросы для самоконтроля
- •Список литературы
- •Для заметок Для заметок
- •400131 Волгоград, просп. Им. В. И. Ленина, 28.
- •400131 Волгоград, ул. Советская, 35.
3.10. Оценка результатов конструкторского проектирования на основе функциональных моделей
Конструкция машины как объекта проектирования представляет собой сложную систему. Математическое описание конструктивных элементов прежде всего базируется на блочно-иерархическом подходе к процессу конструирования (рис. 17). Для технологических машин характерны следующие иерархические уровни: система машин – агрегат – узел – деталь. Уровень IV (низший уровень) составляют детали машин, уровень III – совокупность деталей – узел (сборочная единица), уровень II – агрегат – совокупность узлов, уровень I – совокупность машин (агрегатов). Соответственно иерархии объектов проектирования можно построить иерархию их математических моделей (ММ). Выходными параметрами деталей является статические параметры, например, геометрические параметры, которые будут внутренними при проектировании узлов. В свою очередь, типичными выходными параметрами узлов являются динамические параметры, определяющие качество движения (скорости, ускорения, частоты, амплитуды колебаний и т.д.). Выходные параметры агрегата – параметры, характеризующие качество выполнения операций, например, загрузки детали промышленным роботом в станок ЧПУ. Система машин характеризуется параметрами технологического процесса, состоящего из операций, выполняемых отдельными машинами и агрегатами.
М
Рис.
17.
Блочно-иерархический подход к процессу
конструирования
М
на микроуровне (модели деталей) чаще
всего строятся на основе дифференциальных
уравнений в частных производных. Решение
этих уравнений осуществляется методами
конечных элементов или конечных
разностей. В результате решения уравнений
ММ могут быть получены параметры
искажения формы деталей под воздействием
силовых, тепловых, вибрационных и других
внешних нагрузок. Внутренними параметрами
на микроуровне будут параметры материала
деталей и их формы. К ММ в виде уравнений
в частных производных сводятся также
задачи расчета упругих (кручение и
изгиб) и тепловых деформаций валов и
корпусных деталей станков и машин.
Анализ узлов с позиции функционального проектирования основан на ММ макроуровня, выражаемых системами ОДУ. Примеры узлов: приводы подач рабочих органов станков и машин, механизм главного движения станков и т.д. Цель анализа динамики машин и станков – оценка их устойчивости и качества.
При моделировании станков и машин на уровне агрегатов большое внимание уделяется изучению и определению динамики их несущих систем. В этом случае основными внутренними параметрами узлов является жесткость, масса и демпфирование, а внешними параметрами – переменные нагрузки и воздействия на конструктивные узлы (технологические усилия, силы трения, параметрические воздействия). Модели машин на уровне агрегатов представляются многомассовыми системами и описываются системами дифференциальных уровней. Одна из важных форм представления этой системы следующая:
, (7)
где z – вектор перемещений; M – матрица масс; F – матрица демпфирования; J – матрица жесткости; P – вектор нагрузок.
Решение системы (7) применительно к металлообрабатывающему станку позволяет определить относительные колебания инструмента и детали под воздействием сил резания.
Математические модели систем машин и станков служат для расчета производительности, надежности и экономической эффективности технологических систем в целом. Анализ качества таких систем выполняется на метауровне с помощью их имитационного моделирования как систем массового обслуживания. Составление имитационной модели производится по структурной схеме системы.
