- •1. Кинематика. Механикалық қозғалыс. Механикалық жүйе.
- •2. Механиканың негізгі моделі: материалдық нүкте, қатты дене, тұтас орта.
- •3. Кеңістік және уақыт. Санақ жүйесі. Материалдық нүктенің кинематикасы. Материалық нүкте қозғалысының траекториясы.
- •4. Жылдамдық және үдеу, радиус-вектор.
- •5. Галилейдің салыстырмалық принципі. Галилей түрлендірулері.
- •6. Дененің массасы және импульсі.
- •7. Қисық сызықтық қозғалыстағы жылдамдық және үдеу.
- •9. Бұрыштық жылдамдық және бұрыштық үдеу.
- •10. Эйнштейннің салыстырмалы принциптері.
- •11. Эйнштейн постулаттары.
- •12. Лоренц түрлендірулері және олардың салдары.
- •13. Жылдамдықтарды түрлендіру және қосу
- •14. Динамика. Инерциялық санақ жүйелері.
- •15. Ньютонның заңдары. Күш.
- •16. Механикадағы күштер: гравитациялық күштер, серпінді күштер, үйкеліс күштері.
- •18. Материалдық нүктенің импульс моменті. Күш моменті. Инерция моменті.
- •19. Қозғалмайтын оське қатысты қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі. Штейнер теоремасы.
- •20. Сақталу заңдары. Импульстың сақталу заңы.
- •21.Механикалық энергия. Кинетикалық энергия.
- •22. Жұмыс. Қуат. Консервативті күштер.
- •23.Сыртқы күштер өрісіндегі потенциалдық энергия және оның күшпен байланысы. Механикалық энергияның сақталу заңы.
- •24.Импульс моменті. Реактивті қозғалыс. Импульс моментінің сақталу заңы.
- •25. Гидродинамика элементтері. Сұйықтың қозғалысы. Стационар ағыс. Сығылмайтын сұйықтық. Үзіліссіздік теңдеуі
- •26.Идеал сұйық. Бернулли теңдеуі.
- •27. Тұтқыр сұйық. Ламинарлық және турбуленттік ағыс
- •28.Лаплас формуласы. Стокс өрнегі. Пуазейль формуласы.
- •29.Тербелістер мен толқындар. Тербелмелі қозғалыс. Механикалық қозғалыс.
- •30.Еркін гармониялық тербелістер. Гармониялық тербеліс кинематикасы және динамикасы.
- •31.Серіппедегі жүктің тербелісі. Серіппелі маятник.
- •32.Математикалық маятник. Физикалық маятник.
- •33. Толқындық процесстер. Толқындық қозғалыстың негізгі сипаттамалары.
- •34.Дыбыс. Ультрадыбыс.
- •35.Статистикалық физика және термодинамика негіздері. Молекула-кинетикалық теория. Молекулалардың жылулық қозғалысы.
- •36. Термодинамикалық жүйе. Термодинамикалық жүйенің күйі. Термодинамикалық параметрлер.
- •37. Идеал газ. Идеал газ күйінің теңдеуі. Термодинамикалық процестер.
- •38. Ішкі энергия. Жылу мөлшері және термодинамикалық жұмыс.
- •39. Термодинамиканың бірінші бастамасы. Идеал газдағы изопроцестер.
- •40. Идеал газдың жылусыйымдылығы. Энергияның еркіндік дәрежелері бойынша біркелкі таралуы.
- •41. Жылу двигательдері. Пайдалы әсер коэффициенті.
- •42. Термодинамиканың екінші бастамасы. Карно циклі. Карно теоремасы.
- •43. Клаузиус теоремасы. Энтропия. Энтропияның қасиеті. Энтропия және ықтималдық
- •45. Максвелдің таралу заңы. Газ молекулаларының жылулық қозғалысының жылдамдығы.
- •46. Тасымал құбылыстары. Тепе-тең емес күйдегі термодинамикалық жүйелер.
- •47. Газдардағы тасымалдау құбылыстары.
- •48. Молекуалардың соқтығысуы. Молекулалардың эффективті диаметрлері.
- •49. Молекулалардың еркін жолдарының орташа ұзындығы.
- •50. Тасымал құбылыстарының жалпы теңдеуі. Жылу өткізгіштік. Тұтқырлық. Диффузия. Тасымал коэффиценттері.
- •51. Нақты (реал) газдар және қатты денелер. Ван-дер-Ваальс теңдеуі. Ван-дер-Ваальс изотермалары.
- •52. Газдарды изотермиялық сығу. Фазалық күйлер.
- •53. Клайперон-Клаузиус теңдеуі. Күй диаграммасы. Үштік нүкте.
- •54. Табиғаттағы электрлік құбылыстар және оларды
- •55. Электр тоғы. Тоқ күші. Тоқ тығыздығы.
- •56. Кулон заңы. Электр өрісі.
- •57. Электр өрісінің кернеулігі. Электр өрісінің суперпозиция принципі.
- •58. Потенциал. Потенциал мен электр өрісінің кернеулігі арасындағы байланыс.
- •59. Электрлік диполь.Электр өрісі кернеулік векторының циркуляциясы туралы теорема.Гаусс теоремасы.
- •60.Электр өрісіндегі өткізгіштер. Электр сыйымдылық.
- •61.Оқшауланған өткізгіштер
- •61.Конденсаторлар. Конденсатордың сыйымдылығы.
- •62. Электрлік ығысу және диэлектрлік өтімділік. Зарядталған конденсатор энергиясы.
- •63.Электр өрісінің энергиясы.Электростатикалық өріс энергиясының көлемдік тығыздығы.
- •64.Тұрақты электр тоғы. Электр тоғының болу шарттары.
- •65.Металдардағы электр тоғы.Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тосын күштер. Біртекті емес тізбек бөлігіне арналған Ом заңы. Электр қозғаушы күш.
- •66.Тізбектің тармақталуы.Киргхов ережелері.
- •67.Газдардағы және плазмадағы электр тоғы.
- •68. Барометрлік формула. Больцман және Максвелдің үлестірулері
- •69. Тасымалдау құбылыстарының негізгі заңдары. Молекулалық қозғалыстың негізгі сипаттамалары
- •70. Идеал газдардың молекула-кинетикалық теориясының негізгі заңдарын тұжырымдаңыз
25. Гидродинамика элементтері. Сұйықтың қозғалысы. Стационар ағыс. Сығылмайтын сұйықтық. Үзіліссіздік теңдеуі
Сұйықтардың қозғалысын зерттейтiн механиканың бөлiмiн – гидродинамика деп атайды.
Сұйық бөлшектерiнiң қозғалысын зерттеудiң екі тәсiлi бар.
1.Лагранж тәсiлi
Бұл тәсiлде әрбiр жеке сұйық бөлшегiнiң кеңiстiктегi қозғалыс заңдылығы зерттеледi.
2.Эйлер тәсiлi
Бұл тәсiлде кеңiстiктiң белгiлi бiр нүктесiнен өтетiн сұйық бөлшектерiнiң жылдамдығы қарастырылады.
Кез келген нүктесiндегi сұйықтың жылдамдығының шамасы мен бағыты өзгермейтiн ағысты стационар ағыс деп атайды.
Сығылмайтын тұтқыр емес сұйықты идеал сұйықтық деп, ал сығылатын тұтқыр сұйық реал сұйықтық деп аталады. Идеал сұйықтық – тұтқырлығы мен жылу өткізгіштігі болмайды деп есептелетін сұйықтық.
.
Осы өрнектi ағынның үздiксiздiк теңдеуi деп атайды. Ыдыстың көлденең қимасының сұйық ағысының жылдамдығына көбейтiндiсi тұрақты шама болады.
Сұйық ағысының жылдамдығы ыдыстың көлденең қимасына керi пропорционал.
26.Идеал сұйық. Бернулли теңдеуі.
Идеал сұйықтық – тұтқырлығы мен жылу өткізгіштігі болмайды деп есептелетін сұйықтық.
Идеал сұйықтықта ішкі үйкеліс болмағандықтан оның көршілес екі қабатының арасында жанама кернеу болмайды. Идеал сұйықтық – үзіліссіз дене және оның өзіне тән құрылымы да жоқ.
Бернулли теңдеуi:
мұндағы:
-
динамикалық қысым,
-гидравликалық
қысым,
р - статикалық қысым.
Статикалық қысым (р) сұйықтың қозғалысына тәуелсiз, ал динамикалық қысым сұйық қозғалысына тәуелдi болады. Ол сұйық тежелгенде айқын бiлiнедi.
Гидравликалық қысым салмақсыздық кезiнде жойылады да, асқын салмақ кезiнде өсе түседi.
Горизанталь құбыр үшiн Бернулли теңдеуi:
.
Сұйықтың жылдамдығы артқанда қысымы кемидi.
27. Тұтқыр сұйық. Ламинарлық және турбуленттік ағыс
Тұтқыр сұйықтың ағысын ламинарлық және турбуленттік деп екіге бөледі. Ламинарлық латынның Lamіna – сызықша, тақтайдай, ал турбуленттік латынның - turbulentus – тынышсыз, ретсіз деген сөздерден алынған.
Сұйықтың жеке қабаттары бір-бірімен араласпай, бірінің бетімен екіншісі сырғып параллель қозғалса мұны ламинарлық ағыс деп атайды.
Тұтқыр сұйықтың қабаттарының аралығында пайда болатын ішкі үйкеліс күші сұйықтың қозғалысына әсер етеді. Бұл күштің және түтік қимасының әр жеріндегі сұйықтың жылдамдығының шамасы аз болса ғана сұйықтың ағысы ламинарлы болады. Онда сұйық қабаттарының жылдамдығы түтікше осінен оның қабырғасына қарай параболалық түрде өзгереді.
Турбуленттік ағыста ішкі үйкеліс күшінің артуын жылдамдықтың ағысқа перпендикуляр құраушысының пайда болуымен және тұтқырлық коэффициентінің () өсуімен түсіндіруге болады.
Табиғатта көбіне сұйықтар мен газдардың турбуленттік ағысы кездеседі. Оған түтікше құбыр бойымен судың ағысы, газда немесе суда қозғалған қатты денемен жанасқан қабаттағы газдың, судың ағысы, жер атмосферасындағы ауаның қозғалысы, т.б. жатады.
28.Лаплас формуласы. Стокс өрнегі. Пуазейль формуласы.
Лаплас теңдеуі– дербес туындысы бар дифференциал теңдеу, үшөлшемді кеңістікте:
болып
өрнектеледі.
Лаплас тендеуін стационарлық процестегі температура, кеңістік нүктесіндегі электростатикалық өріс потенциалы, облыстағы тартылыс өрісінің потенциалы, т.б. қанағаттандырады. Лаплас тендеуін қанағаттандыратын функциялар гармониялық функциялар деп аталады.
Стокс (stokes) заңы – тұтқыр сұйықтық ішінде баяу қозғалатын қатты кішкене шарға әсер ететін кедергі күшін анықтайтын заң:
мүндағы Ғ —кедергі күші, - сұйықтықтың тұтқырлық коэффициенті, r— шар радиусы, v— шардың қозғалу жылдамдығы. Стокс заңы негізінде байланыссыз грунттардың механикалық құрамы анықталады.
Пуазейль заңы бойынша сұйық стационар аққанда құбырдан ағып өтетін сұйық көлемі оның тұтқырлығы неғұрлым аз, радиусы көп болса соғұрлым көп болады және қысым градиентіне пропорционал. Газдардың ағысын сұйықтың ағысы деп қарастыруға болады, бірақ газдардың тұтқырлық коэффициенті едәуір аз және олардың сығылғыштығы есепке алынуға тиіс.
Пуазейль формуласы:
