- •1. Кинематика. Механикалық қозғалыс. Механикалық жүйе.
- •2. Механиканың негізгі моделі: материалдық нүкте, қатты дене, тұтас орта.
- •3. Кеңістік және уақыт. Санақ жүйесі. Материалдық нүктенің кинематикасы. Материалық нүкте қозғалысының траекториясы.
- •4. Жылдамдық және үдеу, радиус-вектор.
- •5. Галилейдің салыстырмалық принципі. Галилей түрлендірулері.
- •6. Дененің массасы және импульсі.
- •7. Қисық сызықтық қозғалыстағы жылдамдық және үдеу.
- •9. Бұрыштық жылдамдық және бұрыштық үдеу.
- •10. Эйнштейннің салыстырмалы принциптері.
- •11. Эйнштейн постулаттары.
- •12. Лоренц түрлендірулері және олардың салдары.
- •13. Жылдамдықтарды түрлендіру және қосу
- •14. Динамика. Инерциялық санақ жүйелері.
- •15. Ньютонның заңдары. Күш.
- •16. Механикадағы күштер: гравитациялық күштер, серпінді күштер, үйкеліс күштері.
- •18. Материалдық нүктенің импульс моменті. Күш моменті. Инерция моменті.
- •19. Қозғалмайтын оське қатысты қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі. Штейнер теоремасы.
- •20. Сақталу заңдары. Импульстың сақталу заңы.
- •21.Механикалық энергия. Кинетикалық энергия.
- •22. Жұмыс. Қуат. Консервативті күштер.
- •23.Сыртқы күштер өрісіндегі потенциалдық энергия және оның күшпен байланысы. Механикалық энергияның сақталу заңы.
- •24.Импульс моменті. Реактивті қозғалыс. Импульс моментінің сақталу заңы.
- •25. Гидродинамика элементтері. Сұйықтың қозғалысы. Стационар ағыс. Сығылмайтын сұйықтық. Үзіліссіздік теңдеуі
- •26.Идеал сұйық. Бернулли теңдеуі.
- •27. Тұтқыр сұйық. Ламинарлық және турбуленттік ағыс
- •28.Лаплас формуласы. Стокс өрнегі. Пуазейль формуласы.
- •29.Тербелістер мен толқындар. Тербелмелі қозғалыс. Механикалық қозғалыс.
- •30.Еркін гармониялық тербелістер. Гармониялық тербеліс кинематикасы және динамикасы.
- •31.Серіппедегі жүктің тербелісі. Серіппелі маятник.
- •32.Математикалық маятник. Физикалық маятник.
- •33. Толқындық процесстер. Толқындық қозғалыстың негізгі сипаттамалары.
- •34.Дыбыс. Ультрадыбыс.
- •35.Статистикалық физика және термодинамика негіздері. Молекула-кинетикалық теория. Молекулалардың жылулық қозғалысы.
- •36. Термодинамикалық жүйе. Термодинамикалық жүйенің күйі. Термодинамикалық параметрлер.
- •37. Идеал газ. Идеал газ күйінің теңдеуі. Термодинамикалық процестер.
- •38. Ішкі энергия. Жылу мөлшері және термодинамикалық жұмыс.
- •39. Термодинамиканың бірінші бастамасы. Идеал газдағы изопроцестер.
- •40. Идеал газдың жылусыйымдылығы. Энергияның еркіндік дәрежелері бойынша біркелкі таралуы.
- •41. Жылу двигательдері. Пайдалы әсер коэффициенті.
- •42. Термодинамиканың екінші бастамасы. Карно циклі. Карно теоремасы.
- •43. Клаузиус теоремасы. Энтропия. Энтропияның қасиеті. Энтропия және ықтималдық
- •45. Максвелдің таралу заңы. Газ молекулаларының жылулық қозғалысының жылдамдығы.
- •46. Тасымал құбылыстары. Тепе-тең емес күйдегі термодинамикалық жүйелер.
- •47. Газдардағы тасымалдау құбылыстары.
- •48. Молекуалардың соқтығысуы. Молекулалардың эффективті диаметрлері.
- •49. Молекулалардың еркін жолдарының орташа ұзындығы.
- •50. Тасымал құбылыстарының жалпы теңдеуі. Жылу өткізгіштік. Тұтқырлық. Диффузия. Тасымал коэффиценттері.
- •51. Нақты (реал) газдар және қатты денелер. Ван-дер-Ваальс теңдеуі. Ван-дер-Ваальс изотермалары.
- •52. Газдарды изотермиялық сығу. Фазалық күйлер.
- •53. Клайперон-Клаузиус теңдеуі. Күй диаграммасы. Үштік нүкте.
- •54. Табиғаттағы электрлік құбылыстар және оларды
- •55. Электр тоғы. Тоқ күші. Тоқ тығыздығы.
- •56. Кулон заңы. Электр өрісі.
- •57. Электр өрісінің кернеулігі. Электр өрісінің суперпозиция принципі.
- •58. Потенциал. Потенциал мен электр өрісінің кернеулігі арасындағы байланыс.
- •59. Электрлік диполь.Электр өрісі кернеулік векторының циркуляциясы туралы теорема.Гаусс теоремасы.
- •60.Электр өрісіндегі өткізгіштер. Электр сыйымдылық.
- •61.Оқшауланған өткізгіштер
- •61.Конденсаторлар. Конденсатордың сыйымдылығы.
- •62. Электрлік ығысу және диэлектрлік өтімділік. Зарядталған конденсатор энергиясы.
- •63.Электр өрісінің энергиясы.Электростатикалық өріс энергиясының көлемдік тығыздығы.
- •64.Тұрақты электр тоғы. Электр тоғының болу шарттары.
- •65.Металдардағы электр тоғы.Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тосын күштер. Біртекті емес тізбек бөлігіне арналған Ом заңы. Электр қозғаушы күш.
- •66.Тізбектің тармақталуы.Киргхов ережелері.
- •67.Газдардағы және плазмадағы электр тоғы.
- •68. Барометрлік формула. Больцман және Максвелдің үлестірулері
- •69. Тасымалдау құбылыстарының негізгі заңдары. Молекулалық қозғалыстың негізгі сипаттамалары
- •70. Идеал газдардың молекула-кинетикалық теориясының негізгі заңдарын тұжырымдаңыз
58. Потенциал. Потенциал мен электр өрісінің кернеулігі арасындағы байланыс.
Электр өрісінде орналасқан нүктелік зарядтың потенциалдық энергиясының осы зарядтың шамасына қатынасын электр өрісінің потенциалы деп атайды.
,
Өлшем
бірлігі –
.
Потенциал электр өрісінің энергетикалық сипаттамасы болып табылады, яғни электр өрісінде орналасқан зарядтың потенциалдық энергиясын анықтайды. Потенциал – скаляр шама болып табылады.
Нүктелік
зарядтың
потенциалын анықтайтын өрнек:
Потенциалды күш пен потенциалдық энергия арасында келесі байланыс болады:
Күш пен потенциалдық энергия электр өрісін сипаттайтын шамалармен келесі түрде байланысады:
және
59. Электрлік диполь.Электр өрісі кернеулік векторының циркуляциясы туралы теорема.Гаусс теоремасы.
Бір-бірінен
қашықтықта
орналасқан шамалары бірдей және таңбалары
қарама-қарсы екі зарядтан тұратын
электрлік жүйені электрлік диполь деп
атайды.
Электрлік дипольді сандық сипаттау үшін дипольдік момент немесе электрлік момент деп аталатын физикалық векторлық шама енгізілген.
Электрлік дипольдің берілген нүктедегі электр өрісінің потенциалын анықтайық.
Электрлік дипольдің электр өрісінің потенциалы келесі өрнекпен анықталады:
Сыртқы электр өрісіндегі дипольдің потенциалдық энергиясы:
.
Гаусстың электростатикалық теоремасы электр өрісі кернеулігінің тұйық бет бойымен алынған ағыны сол беттің ішінде орналасқан зарядтардың арасындағы математикалық байланысты тағайындайды:
Гаусс теоремасының физикалық негізі Кулон заңы болып табылады; немесе басқаша айтқанда Гаусс теоремасы Кулон заңының интегралдық түрі деуге болады.
Тыныштықтағы зарядтардың арасындағы өзара әсер электр өрісі арқылы жүзеге асырылады. Кезкелген заряд өзінің айналасындағы кеңістіктің қасиеттін өзгертеді - онда электр өрісін туғызады. Бұл өріс оның әйтеуір бір нүктесінде орналастырылған электр зарядының күші әсерінен болатындығынан білінеді.
Зерттелінетін өріске өзгеріс енгізбеу үшін сыншы зарядтың шамасын жеткілікті мөлшерде кішкентай етіп алу керек. Нүктелік зарядтың өріс кернеулігі:
Өрістің
кернеулігі болып келген нүктесіндегі,
кезкелген нүктелік q зарядқа
күш
әсер етеді. Бұл соңғы формула локальді
тұжырымды береді, өйткені E,q, F бір нүктеде
анықталады .
Ортаның диэлектриктік өтімділігі электр өрісі вакуумнен диэлектрикке өткенде қанша есе кемитінін көрсетеді.
мұндағы:
-
вакуумдегі электр өрісі,
-
заттың ішіндегі электр өрісі.
60.Электр өрісіндегі өткізгіштер. Электр сыйымдылық.
Өткізгіштердің электрлік қасиеттері олардағы еркін зарядталған бөлшектердің болуымен сипатталады. Мысалы, металлдарда еркін электрондар болады. Электр өрісіне өткізгішті енгізгенде ондағы еркін зарядтар ығысып, қайта таралып орналасады. Зарядтардың бұл қайта таралып орналасуы өткізгіш ішіндегі электр өрісі нольге тең болғанша жүреді.
Электр өрісіндегі зарядтардың қайта таралып орналасуын электростатикалық индукция құбылысы деп атайды, ал өткізгіш бетінде пайда болатын теңеспеген зарядтарды индукцияланған зарядтар деп атайды.
Сыртқы электр өрісіндегі өткізгіштерде келесі шарттар орындалады:
1. Электр
өрісіндегі өткізгіштің ішіндегі электр
өрісінің кернеулігі нольге тең,
;
2. Өткізгіш
бетіндегі кез келген нүктедегі электр
өрісінің кернеулігі өткізгіш бетіне
нормаль бағытталады,
;
3. Өткізгіш беті эквипотенциал бет болып табылады;
4. Өткізгіштің ішіндегі кез-келген көлем үшін Остроградский-Гаусс теоремасы келесі түрде жазылады:
;
5. Өткізгіш бетіндегі кез-келген тұйық бет үшін Остроградский-Гаусс теоремасы мына түрде жазылады:
Ығысу
векторы өткізгіш бетіндегі еркін
зарядтардың беттік тығыздығына тең
болады:
екенін
ескерсек, өткізгіш бетіндегі өріс
кернеулігі
өрнегімен
анықталады. Мұндағы
өткізгішті
қоршаған ортаның диэлектриктік
өтімділігі.
