
Добавил:
masterdos
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Мікро- та наносенсори / L2.9.pdf
X
- •Lecture 2.9: First Passage and Narrow Escape Time II
- •Outline
- •MFPT and NET
- •Example: NET in 2D
- •Example: NET in 2D
- •Conclusions
- •Summary of lectures 2.2-2.9
- •Settling time defines the fundamental limits of detection (Lectures 2.2-2.9)
- •Broad range of nanobiosensors
- •Settling time: Problem definition
- •Strategy: Solution of the Diffusion-capture problem by Transient diffusion capacitance
- •A fundamental relationship of biosensor
- •Density: Average vs. first arrival time
- •A ‘Mendeleev table’ for biosensors
- •Biomimetic Strategies to beat diffusion (1)
- •Biomimetic Strategies to beat diffusion (2)
- •Strategies to beat diffusion (3)
- •Response time for various geometries
- •Summary: Lectures 2.2-2.9

Broad range of nanobiosensors
Nano Cantilever (~pM)
Si-NW/CNT (nM-aM)
Nano-Net (nM-pM)
Nanodots
Array sensors (~pM)
ChemFET/IsFET (~mM)
Biobarcode (~aM)
9

Settling time: Problem definition
|
|
|
|
|
W |
d ρ |
2 |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|||
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
= D |
ρ |
|
|
|
|
|
|
dt |
||
|
|
|
|
|
|
|||
|
|
|
|
|
|
ddNt = kF (N0 − N)ρs
The diffusion-capture problem is very challenging, especially for complex capture surfaces
10

Strategy: Solution of the Diffusion-capture problem by Transient diffusion capacitance
1 |
N (t)=C0 ρ0t A |
||
2 |
Look up electrostatic C0 |
||
|
|
|
|
|
ε → D W → 2nDt |
||
3 |
Calculate time to reach |
||
|
N (ts )= Ns |
||
4 |
Plot log ts vs. log ρ0 |
||
|
|
|
|
ρs
ρ0 |
W (t) = |
2nDt |
|
|
|
|
|
|
C0,0 |
= |
4πD |
|
|
a0−1 −(W +a0 )−1 |
||||
|
|
CD(t) = 4πD −1 a0−1 −(6Dt +a0 )
11

A fundamental relationship of biosensor
D=1 |
|
|
1<D<2 |
|
|
|
D=2 |
|
|
|
|
3−D |
|
Fractal dimension |
|
|
|
|
|
||||
|
|
|
− |
2 |
F |
|
|
Limits of |
|
|
|
|
|
|
|
|
ρ0 |
~ Ns ×ts |
|
|
|
Settling (response) time |
|
detection |
|
|
|
|
|||
|
|
|
|
|
|
|
Minimum number of analyte (depends on transduction) … and the relationship applies even for complex sensors
12
Соседние файлы в папке Мікро- та наносенсори