- •Калининград
- •Содержание рабочей программы учебной дисциплины «основы функционирования систем сервиса»
- •1. Пояснительная записка
- •2.Тематический план учебного курса «Основы функционирования систем сервиса»
- •3. Содержание учебной дисциплины
- •3.1. Содержание основных тем курса
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •3.2.Перечень и тематика практических занятий
- •4.Тематика самостоятельных контрольных и курсовых работ и рефератов
- •5.Вопросы для промежуточного и итогового контроля
- •6. Критерии оценки знаний
- •7.Рекомендации по организации самостоятельной работы студентов
- •8. Учебно-методическое обеспечение дисциплины
- •8.1. Рекомендуемая литература
- •Учебно-методический блок теоретическая часть
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Классификация функциональных элементов систем сервиса
- •Законы функционирования технических элементов систем сервиса
- •Вращательное движение и его параметры
- •Поступательное движение и его модель
- •Силы, действующие на транспортное средство
- •Основы термодинамики
- •Процессы преобразования тепловой и механической энергии
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Классификация элементов
- •Типы передач, виды передаточных механизмов и их характеристики
- •Оси, валы и муфты
- •Типы соединений элементов
- •Основы виброзащиты машин
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Принципы конструирования
- •Общие правила конструирования
- •Совершенствование конструктивной схемы
- •Основные требования к конструкциям
- •Стадии конструирования технических средств
- •Расчетные схемы и расчетные режимы
- •Виды нагружения: статическое, динамическое, импульсное, циклическое
- •Выбор допускаемых напряжений и материалов
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Основные понятия надежности
- •Показатели надежности
- •Надежность систем
- •Тема 8. Методы оптимизации систем сервиса
- •Критерии эффективности систем сервиса
- •Методы оптимизации систем сервиса
- •Методы экспертных оценок
- •Прогнозирование
- •Теория планирования эксперимента
- •Основы теории деревьев
- •Тема 9. Системы массового обслуживания в сервисе
- •Общая характеристика массового обслуживания
- •Характеристика процессов в (смо) и (смс)
- •Основы теории массового обслуживания
- •Понятие случайного процесса
- •Марковский случайный процесс
- •Потоки событий
- •Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний
- •Задачи теории массового обслуживания
- •Классификация систем массового обслуживания
- •Математические модели простейших систем массового обслуживания
- •Одноканальная смо с отказами
- •Возможные постановки задач оптимизации n – канальных смо с отказами
- •Практические занятия
- •1. Системы сервиса, их характеристики и законы функционирования Индексация потребительской удовлетворенности
- •Примерный вид анкеты для потребителя
- •Задания для самостоятельной работы
- •2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Сущность метода дц
- •Построение дц
- •Определение количественных характеристик дц и критериев их оценки
- •Формирование экспертной группы
- •Матрица со скорректированными коэффициентами компетенции
- •Проведение опроса
- •Оценка объектов с помощью матрицы предпочтительности
- •Обработка результатов опроса экспертов
- •Задания для самостоятельной работы
- •3. Принципы функционирования и организация производственных процессов систем сервиса
- •Задание для самостоятельной работы
- •Плоскопараллельное движение твердого тела
- •Определение скоростей точек плоской фигуры
- •Теорема о проекциях скоростей двух точек тела
- •Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей
- •Решение задач на определение скорости
- •Определение ускорений точек плоской фигуры
- •Решение задач на определение ускорения
- •Мгновенный центр ускорений
- •5. Основы конструирования и расчета элементов технических средств
- •6. Надежность функционирования систем сервиса и их элементов
- •Задачи с использованием теории сложения и умножения вероятностей
- •Задачи для самостоятельного решения
- •7. Методы оптимизации систем сервиса Методы прогнозирования
- •Метод «дерева» решений
- •Планирование эксперимента и обработка его результатов
- •Матрица линейного пфэ типа
- •Задания для самостоятельной работы
- •Результаты эксперимента по вариантам
- •Предпосылки применения корреляционно-регрессионного анализа
- •8. Системы массового обслуживания в сервисе Задачи теории массового обслуживания
- •Классификация систем массового обслуживания
- •Одноканальная смо с отказами
- •Задания для самостоятельной работы
- •100100.62- «Сервис»
- •1 Общие методические положения
- •1.4. Аттестация студентов
- •2.Тематический план учебного курса
- •3. Содержание учебной дисциплины
- •3.1. Содержание основных тем курса
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •3.2.Перечень и тематика практических занятий
- •4.Тематика самостоятельных контрольных и курсовых работ и рефератов
- •5.Вопросы для промежуточного и итогового контроля
- •6. Критерии оценки знаний
- •7. Учебно-методическое обеспечение дисциплины
- •7.1. Рекомендуемая литература
- •1 Общие методические положения
- •2 Разделы (темы) дисциплины и виды занятий
- •3. Методические указания по изучению разделов (тем) дисциплины
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •4. Учебно-методическое обеспечение дисциплины
- •4.1. Рекомендуемая литература
- •2.4.Глоссарий
Решение задач на определение ускорения
Ускорение любой точки плоской фигуры в данный момент времени можно найти, если известны: 1) векторы скорости и ускорения какой-нибудь точки А этой фигуры в данный момент; 2) траектория какой-нибудь другой точки В фигуры. В ряде случаев вместо траектории второй точки фигуры достаточно знать положение мгновенного центра скоростей.
Тело (или механизм) при решении задач надо изображать в том положении, для которого требуется определить ускорение соответствующей точки. Расчет начинается с определения по данным задачи скорости и ускорения точки, принимаемой за полюс.
План решения (если заданы скорость и ускорение одной точки плоской фигуры и направления скорости и ускорения другой точки фигуры):
1) Находим мгновенный центр скоростей, восставляя перпендикуляры к скоростям двух точек плоской фигуры.
2) Определяем мгновенную угловую скорость фигуры.
3) Определяем центростремительное ускорение точки вокруг полюса, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.
4) Находим модуль вращательного ускорения, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.
5) Определяем мгновенное угловое ускорение плоской фигуры по найденному вращательному ускорению.
6) Находим ускорение точки плоской фигуры при помощи формулы распределения ускорений.
При решении задач можно применять «теорему о проекциях векторов ускорений двух точек абсолютно твердого тела»:
«Проекции
векторов ускорений двух точек абсолютно
твердого тела, которое совершает
плоскопараллельное движение, на прямую,
повернутую относительно прямой,
проходящей через эти две точки, в
плоскости движения этого тела на угол
в
сторону углового ускорения, равны».
Эту
теорему удобно применять, если известны
ускорения только двух точек абсолютно
твердого тела как по модулю, так и по
направлению, известны только направления
векторов ускорений других точек этого
тела (геометрические размеры тела не
известны), не известны
и
– соответственно проекции векторов
угловой скорости и углового ускорения
этого тела на ось, перпендикулярную
плоскости движения, не известны скорости
точек этого тела.
Известны еще 3 способа определения ускорений точек плоской фигуры:
1) Способ основан на дифференцировании дважды по времени законов плоскопараллельного движения абсолютно твердого тела.
2) Способ основан на использовании мгновенного центра ускорений абсолютно твердого тела (о мгновенном центре ускорений абсолютно твердого тела будет рассказано ниже).
3) Способ основан на использовании плана ускорений абсолютно твердого тела.
Пример.
Диск катится без скольжения по прямой.
Центр его С
имеет скорость
и ускорение
(рис. 43). Найдем ускорение точки А.
Рис.43
Угловую скорость находим с помощью мгновенного центра скоростей:
.
Угловое
ускорение при таком движении можно
найти как производную от угловой
скорости. Имея в виду, что
,
а точка С
движется по прямой, получим
.
Если
С
– полюс, то
,
где
.
Величину ускорения найдём с помощью проекций на оси х и у:
Тогда
.
Ускорение
мгновенного центра скоростей
:
,
где
.
И,
так как
,
ускорение
и
.
Таким образом, ускорение мгновенного центра скоростей не равно нулю.
Пример. (рис. 44).
Рис.44
Найдём
ускорение точки А, полагая
т.е.
Имеем:
,
(1)
где
,
но направление вектора
неизвестно, неизвестно и угловое
ускорение
.
Предположим, что вектор направлен перпендикулярно АВ, влево.
Ускорение
,
конечно, направлено по траектории
прямолинейного движения точки А,
предположим вниз. Спроектируем векторное
равенство (1) на оси х
и
у,
получим:
и
.
Из второго уравнения сразу находим ускорение точки А
.
Положительное
значение
указывает на то, что направление вектора
выбрано правильно.
Из
первого уравнения можно найти
ускорение
и угловое ускорение
(направления
и
также угаданы верно).
