- •Калининград
- •Содержание рабочей программы учебной дисциплины «основы функционирования систем сервиса»
- •1. Пояснительная записка
- •2.Тематический план учебного курса «Основы функционирования систем сервиса»
- •3. Содержание учебной дисциплины
- •3.1. Содержание основных тем курса
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •3.2.Перечень и тематика практических занятий
- •4.Тематика самостоятельных контрольных и курсовых работ и рефератов
- •5.Вопросы для промежуточного и итогового контроля
- •6. Критерии оценки знаний
- •7.Рекомендации по организации самостоятельной работы студентов
- •8. Учебно-методическое обеспечение дисциплины
- •8.1. Рекомендуемая литература
- •Учебно-методический блок теоретическая часть
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Классификация функциональных элементов систем сервиса
- •Законы функционирования технических элементов систем сервиса
- •Вращательное движение и его параметры
- •Поступательное движение и его модель
- •Силы, действующие на транспортное средство
- •Основы термодинамики
- •Процессы преобразования тепловой и механической энергии
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Классификация элементов
- •Типы передач, виды передаточных механизмов и их характеристики
- •Оси, валы и муфты
- •Типы соединений элементов
- •Основы виброзащиты машин
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Принципы конструирования
- •Общие правила конструирования
- •Совершенствование конструктивной схемы
- •Основные требования к конструкциям
- •Стадии конструирования технических средств
- •Расчетные схемы и расчетные режимы
- •Виды нагружения: статическое, динамическое, импульсное, циклическое
- •Выбор допускаемых напряжений и материалов
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Основные понятия надежности
- •Показатели надежности
- •Надежность систем
- •Тема 8. Методы оптимизации систем сервиса
- •Критерии эффективности систем сервиса
- •Методы оптимизации систем сервиса
- •Методы экспертных оценок
- •Прогнозирование
- •Теория планирования эксперимента
- •Основы теории деревьев
- •Тема 9. Системы массового обслуживания в сервисе
- •Общая характеристика массового обслуживания
- •Характеристика процессов в (смо) и (смс)
- •Основы теории массового обслуживания
- •Понятие случайного процесса
- •Марковский случайный процесс
- •Потоки событий
- •Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний
- •Задачи теории массового обслуживания
- •Классификация систем массового обслуживания
- •Математические модели простейших систем массового обслуживания
- •Одноканальная смо с отказами
- •Возможные постановки задач оптимизации n – канальных смо с отказами
- •Практические занятия
- •1. Системы сервиса, их характеристики и законы функционирования Индексация потребительской удовлетворенности
- •Примерный вид анкеты для потребителя
- •Задания для самостоятельной работы
- •2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Сущность метода дц
- •Построение дц
- •Определение количественных характеристик дц и критериев их оценки
- •Формирование экспертной группы
- •Матрица со скорректированными коэффициентами компетенции
- •Проведение опроса
- •Оценка объектов с помощью матрицы предпочтительности
- •Обработка результатов опроса экспертов
- •Задания для самостоятельной работы
- •3. Принципы функционирования и организация производственных процессов систем сервиса
- •Задание для самостоятельной работы
- •Плоскопараллельное движение твердого тела
- •Определение скоростей точек плоской фигуры
- •Теорема о проекциях скоростей двух точек тела
- •Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей
- •Решение задач на определение скорости
- •Определение ускорений точек плоской фигуры
- •Решение задач на определение ускорения
- •Мгновенный центр ускорений
- •5. Основы конструирования и расчета элементов технических средств
- •6. Надежность функционирования систем сервиса и их элементов
- •Задачи с использованием теории сложения и умножения вероятностей
- •Задачи для самостоятельного решения
- •7. Методы оптимизации систем сервиса Методы прогнозирования
- •Метод «дерева» решений
- •Планирование эксперимента и обработка его результатов
- •Матрица линейного пфэ типа
- •Задания для самостоятельной работы
- •Результаты эксперимента по вариантам
- •Предпосылки применения корреляционно-регрессионного анализа
- •8. Системы массового обслуживания в сервисе Задачи теории массового обслуживания
- •Классификация систем массового обслуживания
- •Одноканальная смо с отказами
- •Задания для самостоятельной работы
- •100100.62- «Сервис»
- •1 Общие методические положения
- •1.4. Аттестация студентов
- •2.Тематический план учебного курса
- •3. Содержание учебной дисциплины
- •3.1. Содержание основных тем курса
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •3.2.Перечень и тематика практических занятий
- •4.Тематика самостоятельных контрольных и курсовых работ и рефератов
- •5.Вопросы для промежуточного и итогового контроля
- •6. Критерии оценки знаний
- •7. Учебно-методическое обеспечение дисциплины
- •7.1. Рекомендуемая литература
- •1 Общие методические положения
- •2 Разделы (темы) дисциплины и виды занятий
- •3. Методические указания по изучению разделов (тем) дисциплины
- •Тема 1. Системы сервиса, их характеристики и законы функционирования
- •Тема 2. Особенности и свойства производственных систем сервиса и их функциональных подсистем
- •Тема 3. Принципы функционирования и организация производственных процессов систем сервиса
- •Тема 4. Основы функционирования технических средств в системах сервиса
- •Тема 5. Передачи, передаточные механизмы технических средств и их кинематические характеристики
- •Тема 6. Основы конструирования и расчета элементов технических средств
- •Тема 7. Надежность функционирования систем сервиса и их элементов
- •Тема 8. Методы оптимизации систем сервиса
- •Тема 9. Системы массового обслуживания в сервисе
- •4. Учебно-методическое обеспечение дисциплины
- •4.1. Рекомендуемая литература
- •2.4.Глоссарий
Решение задач на определение скорости
Для определения искомых кинематических характеристик (угловой скорости тела или скоростей его точек) надо знать модуль и направление скорости какой-нибудь одной точки и направление скорости другой точки сечения этого тела. С определения этих характеристик по данным задачи и следует начинать решение.
Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательное движущееся тело имеет в данный момент времени свой мгновенный центр скоростей Р и свою угловую скорость.
Пример.
Тело, имеющее форму катушки, катится
своим средним цилиндром по неподвижной
плоскости так, что
(см). Радиусы цилиндров: R
=
4 см и
r
=
2 см (рис.36). .
Рис.36
Определим скорости точек А,В и С.
Мгновенный центр скоростей находится в точке касания катушки с плоскостью.
Скорость полюса С.
.
Угловая скорость катушки
.
Скорости точек А и В направлены перпендикулярно отрезкам прямых, соединяющих эти точки с мгновенным центром скоростей. Величина скоростей:
Пример.
Стержень АВ
скользит
концами по взаимно перпендикулярным
прямым так, что при угле
скорость
.
Длина стержня
.
Определим скорость конца А
и угловую скорость стержня.
Рис.37
Нетрудно
определить направление вектора
скорости точки А,
скользящей по вертикальной прямой.
Тогда
находится на пересечении перпендикуляров
к
и
(рис. 37).
Угловая
скорость
.
Скорость
точки А:
.
А
скорость центра стержня С,
например, направлена перпендикулярно
и равна:
.
Определение ускорений точек плоской фигуры
Покажем,
что ускорение любой точки
М
плоской фигуры (так же, как и скорость)
складывается из ускорений, которые
точка получает при поступательном и
вращательном движениях этой фигуры.
Положение точки М
по отношению к осям Оxy
(см.рис.30)
определяется радиусом-вектором
где
.
Тогда
.
В
правой части этого равенства первое
слагаемое есть ускорение
полюса А,
а второе слагаемое определяет ускорение
,
которое точка м получает при вращении
фигуры вокруг полюса A.
следовательно,
.
Значение , как ускорения точки вращающегося твердого тела, определяется как
где
и
- угловая скорость и угловое ускорение
фигуры, а
- угол между вектором
и отрезком МА
(рис.41).
Таким
образом, ускорение любой точки М
плоской
фигуры геометрически складывается из
ускорения какой-нибудь другой точки
А,
принятой за полюс, и ускорения, которое
точка М
получает
при вращении фигуры вокруг этого полюса.
Модуль и направление ускорения
,
находятся построением соответствующего
параллелограмма.
Однако
вычисление
с
помощью параллелограмма, изображенного
на рис.23, усложняет расчет, так как
предварительно надо будет находить
значение угла
,
а затем - угла между векторами
и
,
Поэтому при решении задач удобнее
вектор
заменять его касательной
и нормальной
составляющими и представить в виде
.
При
этом вектор
направлен перпендикулярно АМ
в сторону вращения, если оно ускоренное,
и против вращения, если оно замедленное;
вектор
всегда направлен от точки М
к полюсу А
(рис.42).
Численно же
.
Если
полюс А
движется
не прямолинейно, то его ускорение можно
тоже представить как сумму касательной
и нормальной
составляющих, тогда
.
Рис.41 Рис.42
Наконец,
когда точка М
движется
криволинейно и ее траектория известна,
то
можно
заменить суммой
.
