Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OFSS_NORDIN_V_V.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
5.8 Mб
Скачать

Решение задач на определение скорости

Для определения искомых кинематических характеристик (угловой скорости тела или скоростей его точек) надо знать модуль и направление скорости какой-нибудь одной точки и направление скорости другой точки сечения этого тела. С определения этих характеристик по данным задачи и следует начинать решение.

Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательное движущееся тело имеет в данный момент времени свой мгновенный центр скоростей Р и свою угловую скорость.

Пример. Тело, имеющее форму ка­тушки, катится своим средним цилиндром по неподвиж­ной плоскости так, что (см). Радиусы цилин­дров: R = 4 см и r = 2 см (рис.36). .

Рис.36

 

Определим скорости точек А,В и С.

Мгновенный центр скоростей нахо­дится в точке касания катушки с плоско­стью.

Скорость полюса С.

.

 Угловая скорость катушки

.

Скорости точек А и В направлены перпендикулярно отрезкам прямых, соединяющих эти точки с мгновенным центром скоростей. Величина скоростей:

Пример. Стержень АВ скользит концами по взаимно перпендикулярным прямым так, что при угле скорость . Длина стержня . Определим скорость конца А и угловую скорость стержня.

Рис.37

Нетрудно определить направление век­тора скорости точки А, скользящей по вер­тикальной прямой. Тогда находится на пересечении перпендикуляров к и (рис. 37).

Угловая скорость .

Скорость точки А: .

 А ско­рость центра стержня С, например, направлена перпендикулярно и равна:

.

 

Определение ускорений точек плоской фигуры

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

.

В правой части этого равенства первое слагаемое есть ускорение полюса А, а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A. следовательно,

.

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А, принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма.

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде

.

При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

.

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

.

 

Рис.41 Рис.42

 

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]