- •Ответы к экзамену по дисциплине: Релейная защита и автоматика систем электроснабжения:
- •1)Назначение релейной защиты и автоматики в системах электроснабжения
- •2)Повреждения и ненормальные режимы в системах электроснабжения.
- •3)Основные требования пуэ к релейной защите от повреждений и ненормальных режимов.
- •4)Ручное и дистанционное управление и сигнализация. Дистанционное управление контакторами и нереверсивными и реверсивными магнитными пускателями.
- •5)Дистанционное управление выключателем с электромагнитным приводом. Сигнализация и блокировка от прыганий.
- •6)Источники оперативного тока. Назначение, общие требования. Постоянный оперативный ток. Выпрямленный оперативный ток. Переменный оперативный ток. Шот
- •Источники постоянного оперативного тока
- •Переменный оперативный ток
- •7)Способы включения реле и способы их воздействия на выключатели.
- •8)Изображение схем рза. Основные требования к схемам защиты.
- •9)Устройства центральной сигнализации. Назначение, принцип действия аварийной, предупреждающей сигнализации.
- •10)Условия работы трансформаторов тока в схемах рза. Методика выбора тт для питания схем рза. 10% кратность. Фильтры симметричных составляющих тока.
- •Расчет нагрузки в зависимости от схемы соединения трансформаторов тока
- •11)Схемы соединения тт и обмоток реле в схемах релейной защиты. Векторные диаграммы токов при различных видах повреждений
- •Расчет нагрузки в зависимости от схемы соединения трансформаторов тока
- •12)Трансформаторы напряжения в схемах рза. Схемы включения тн и схемы соединения обмоток тн
- •13)Достоинства и недостатки микропроцессорных защит.
- •14)Максимальная токовая защита, принцип действия, Обеспечение селективности мтз.
- •15)Схемы мтз с независимыми выдержками времени, выполненными по схемам полной и неполной звезды, область применения, принцип действия.
- •Неполная звезда.
- •Полная звезда.
- •16)Выбор параметров срабатывания максимальной токовой защиты.
- •17)Токовая отсечка лэп. Принцип действия, выбор параметров срабатывания.
- •18)Токовая отсечка линий с двухсторонним питанием. Выбор параметров срабатывания.
- •19)Расширение защищаемой зоны токовой отсечки со ступенчатой характеристикой выдержки времени. Выбор параметров срабатывания.
- •20)Схемы токовой отсечки со ступенчатой характеристикой выдержки времени на постоянном оперативном токе. Область применения, выбор параметров срабатывания
- •21)Применение микропроцессорных устройств для защит лэп, выбор параметров срабатывания. Построение карты селективности мтх с зависимой характеристикой.
- •22)Направленные токовые защиты, назначение принцип действия. Выбор параметров срабатывания.
- •Принцип действия защиты.
- •23)Защита кольцевых сетей. Каскадное действие защит.
- •24)Принципиальные схемы мтнз на постоянном оперативном токе, схемы мтнз с применением микропроцессорных защит.
- •25)Принцип действия продольной дифференциальной защиты линий. Выбор параметров срабатывания. Расчет тока небаланса, коэффициента чувствительности Способы повышения коэффициента чувствительности.
- •26)Назначение, принцип действия поперечной дифференциальной защиты линий. Выбор параметра срабатывания. Оценка и область применения поперечной дифференциальной защиты линий.
- •27)Защиты от замыканий на землю, размещение защит от замыкания на землю в сети с изолированной нейтралью.
- •28)Резистивное заземление нейтрали в сетях 6,10,35 кВ. Назначение Выбор величины сопротивления заземления нейтрали.
- •29)Принцип действия дифференциально-фазной высокочастотной защиты лэп.
- •30)Дистанционная защита лэп, назначение, принцип действия и область применения. Принцип выбора уставок действия защиты.
- •Схемы включения дистанционных органов на ток и напряжение
- •31)Виды повреждений и ненормальных режимов синхронных генераторов.
- •32)Защиты низковольтных генераторов мощностью до 1мВт. Выбор параметров срабатывания.
- •33)Защиты высоковольтных генераторов. Выбор параметров срабатывания.
- •34)Виды повреждений и ненормальных режимов трансформаторов.
- •35)Защита трансформаторов плавкими предохранителямим. Область применения, Выбор тока плавкой ставки.
- •36)Токовые защиты трансформаторов. Мтз двух и трехобмоточных трансформаторов. Защита от перегрузки. Выбор параметров срабатывания.
- •37)Токовые защиты обратной и нулевой последовательности трансформаторов. Принцип действия и область применения.
- •38)Принцип действия и особенности дифференциальной токовой защиты трансформаторов. Разновидности схем дифференциальной токовой защиты трансформаторов.
- •39)Дифференциальная токовая отсечка трансформатора. Принцип действия, пусковые органы, выбор основных параметров
- •40)Дифференциальная токовая защита трансформатора с промежуточным быстронасыщающимися трансформаторами. Основные органы, принцип действия, выбор параметров срабатывания с реле типа рнт-565.
- •41)Дифференциальная токовая защита трансформатора с применением реле, имеющих торможение. Основные органы, принцип действия, выбор параметров срабатывания. Принцип действия реле типа дзт.
- •42)Газовая защита трансформаторов, принцип действия, назначение, область применения.
- •44)Защита шин, виды повреждений, принцип действия, основные требования, способы выполнения и основные типы защит шин. Токовые защиты шин. Выбор параметров срабатывания.
- •45)Дифференциальная токовая защита шин. Неполные дифференциальные защиты шин. Выбор параметров срабатывания. Особенности апв шин.
- •46)Требования к защите конденсаторных установок до 1000 в и выше 1000 в. Защита ку. Выбор параметров срабатывания. Защита конденсаторов плавкими предохранителями, требования к ним.
- •47)Защита конденсаторной установки высокого напряжения. Мтз, защита от перегрузки, защита от повышения напряжения. Выбор параметров срабатывания
- •48)Виды повреждений и ненормальных режимов работы двигателей переменного тока.
- •49)Защита двигателей напряжением до 1000 в. Выбор параметров срабатывания.
- •50)Защита двигателей напряжением выше 1000 в. Выбор параметров срабатывания.
- •51)Устройства апв. Назначение, основные разновидности, требования к устройствам апв. Выдержка времени апв.
- •52)Принцип действия апв на постоянном оперативном токе с использованием реле типа рпв. Особенности апв лэп с двухсторонним питанием.
- •Автоматическое повторное включение линий.
- •Устройство апв однократного действия на подстанциях с переменным оперативным током.
- •Устройства апв двукратного действия на подстанциях с переменным оперативным током.
- •Устройства апв на выключателях с электромагнитными приводами на подстанциях с постоянным или выпрямленным оперативным током.
- •Взаимодействие устройств aiib и релейной защиты.
- •53)Устройства авр, назначение, основные требования.
- •54)Принцип построения схем авр. Выбор параметров срабатывания авр.
- •Преимущества и недостатки различных типов авр с позиций перечисленных требований.
- •55)Автоматическая частотная разгрузка в системах электроснабжения. Назначение, принцип действия.
- •56)Схема включения реле частоты. Выбор параметров срабатывания ачр. Согласованность времени действия ачр и чапв.
5)Дистанционное управление выключателем с электромагнитным приводом. Сигнализация и блокировка от прыганий.
Ответ: Дистанционное управление выключателями заключается в подаче от руки командных сигналов на дистанционные приводы выключателей со щита управления или другого пункта, где установлены ключи управления. Обслуживающий персонал, как правило, не видит выключателя и его привода, поэтому схемы дистанционного управления предусматривают передачу обратного сигнала от привода на щит управления, указывающего положение выключателя или его изменение. Подача команды на отключение производится замыканием цепи отключающей катушки непосредственно контактами ключа управления, так как ток в этой цепи составляет 10—12 А.
Подача команды на включение масляных выключателей не может производиться замыканием цепи включения непосредственно контактами ключа управления, так как величина тока в этой цепи у различных приводов составляет 100—400 А. Применение такого способа потребовало бы изготовления массивных громоздких ключей и затраты большого количества силового кабеля на подвод цепей включающих катушек к ключам управления. Поэтому управление включающими катушками производится через промежуточные контакторы с мощными контактами, рассчитанными на замыкание и размыкание тока указанной выше величины. Контакторы устанавливаются в непосредственной близости от привода и соединяются с включающей катушкой короткими отрезками кабеля. Таким образом, при подаче команды на включение выключателя ключом управления замыкается цепь обмотки контактора, а контактор, срабатывая, своими контактами замыкает цепь включающей катушки. Отключающие и включающие катушки воздушных выключателей имеют одинаковое потребление и поэтому управляются одинаково непосредственно ключами управления. Отключающие и включающие катушки как масляных, так и воздушных выключателей не рассчитаны на длительное прохождение тока. Поэтому схемы управления предусматривают автоматическое размыкание этих цепей по окончании соответствующей операции во избежание повреждения катушек, в случаях задержки или заедания ключа управления. Для этой цели применяются специальные блокировочные контакты различных типов. Блокировочный контакт типа КСА, показанный на рис. 5-1, со стоит из двух латунных контактов 1, к которым подводятся и крепятся под винты 2 соответствующие цепи, и пластмассовой шайбы 3 с запрессованным в нее медным кольцом 4. Медное кольцо имеет два полукруглых выступа, выходящих из шайбы с двух сторон, которые при повороте на определенный угол замыкают контакты 1 и тем самым подведенную к ним цепь. Для надежного замыкания цепи латунные контакты 1 прижимаются к выступам медного кольца стальными пружинками 5. Шайбы 3 надеваются на шестигранную ось 6, что дает возможность располагать их под таким углом к латунным контактам 1, при котором замыкание или размыкание цепи происходит в нужный момент. Ось блокировочных контактов при помощи тяги соединяется с приводом выключателя так, чтобы их переключение происходило при определенных положениях привода. Так, блокировочный контакт в цепи отключающей катушки, замкнутый при включенном выключателе, должен разомкнуться после того, как выключатель начал отключаться, и замкнуться вновь в начале хода привода па включение. Блокировочный контакт включающей катушки или включающего контактора, замкнутый при отключенном выключателе, должен разомкнуться в конце хода привода на включение и замкнуться вновь в конце хода привода на отключение. Положение блокировочных контактов в цепях сигнализации должно соответствовать положению выключателя после завершения операции.
|
На рис. 5-3 приведена упрощенная схема управления масляным выключателем с электромагнитным приводом. Схема включает в себя катушку включения KB и отключения КО, контактор включения КП, ключ управления КУ, блокировочные контакты БКВ и БКО, связанные с валом выключателя, и БК1 и БК2, связанные с сердечником катушки отключения. Питание цепей управления производится от шинок управления ШУ через предохранители ПУ. Цепи катушки включения KB питаются от шинок ШB через предохранители ПВ.
Включение и отключение выключателя производится с помощью ключа управления типа КСВФ (рис. 5-2). При этом для упрощения показан только один пакет ключа, контактами которого подаются команды на включение и отключение выключателя. Положение всех элементов схемы соответствует включенному состоянию выключателя.
|
Дистанционное отключение производится переводом ключа в положение «отключить», при котором, как показано на рис. 5-2, замыкаются контакты 18—19. При этом образуется цепь от шинки + ШУ через замкнувшиеся контакты ключа 18—19, блокировочный контакт БКО, замкнутый при включенном выключателе, на отключающую катушку КО, второй конец которой присоединен к шинке — ШУ. При подаче напряжения на КО ее сердечник втягивается и бойком Б расцепляет защелку 3, что приводит к отключению выключателя. При отключении выключателя блокировочный контакт БКО размыкается, а —БКВ замыкается, подготавливая цепь включения. Таким образом, при отключении выключателя происходит автоматическое размыкание цепи отключения, что предотвращает длительное прохождение тока по КО. Автоматическое отключение выключателя от защиты происходит при замыкании контактов реле защиты РЗ. Поскольку контакты реле РЗ включены параллельно контактам КУ 18—19, то при их замыкании образуется та же цепь, что и при дистанционном отключении. Автоматическое размыкание цепи КО в этом случае предотвращает повреждение контактов реле РЗ, не рассчитанных на разрыв тока, проходящего через КО.
Дистанционное включение производится переводом ключа управления в положение «включить», при котором, как видно из рис. 5-2, замыкаются контакты 17—20. При этом образуется цепь от шинки + ШУ через контакты ключа 17—20, замкнутый блокировочный контакт БК2, блокировочный контакт БКВ, замкнутый при отключенном выключателе, на обмотку контактора включения KП, второй конец которой присоединен к шинке —ШУ. Контактор срабатывает и, замыкая контакты, подает напряжение на включающую катушку КВ. Выключатель включается, блокировочный контакт БКВ размыкается, а БКО замыкается, подготавливая цепь отключения. Таким образом, при включении выключателя происходит автоматическое размыкание цепи включения. Автоматическое включение от автоматики (АПВ и л и АВР) происходит при замыкании контактов реле автоматики РА. Поскольку контакты реле РА включены параллельно контактам ключа 17—20, то образуется та же цепь, что и при дистанционном включении выключателя. Блокировка от многократного включе-н и я (блокировка от «прыгания») осуществляется блокировочными контактами БК1 и БК2. Так, если при включении выключателя на короткое замыкание ключ будет длительно задержан или из-за неисправности останется в положении «включить», то выключатель будет многократно включаться на короткое замыкание и отключаться релейной защитой («прыгать»), что может привести к его повреждению. Блокировочные контакты предотвращают такое многократное включение. Как видно из схемы рис. 5-3, при первом же срабатывании защиты РЗ сердечник КО втянется, отключит выключатель и одновременно переключит блокировочные контакты, т. е. разомкнет БК2 и замкнет БК1 При этом, если контакты 17—20 ключа управления КУ продолжают оставаться замкнутыми, то повторного включения не произойдет, так как цепь включения оказывается разомкнутой на контакте БК2, а плюс от КУ через блокировочный контакт БК1 попадает на КО и удерживает сердечник во втянутом положении до размыкания контактов ключа 17—20. Показанные на рис. 5-3 реле РКО и РКВ предназначены для сигнализации положения выключателя и для контроля исправности цепи отключения (РКО) и цепи включения (РКВ). Как видно из схемы, реле РКО включено последовательно с КО, а реле РКВ — последовательно с КП. Поэтому при включенном выключателе, когда замкнут контакт БКО, обтекается током и подтянуто реле РКО, а при отключенном выключателе, когда замкнут контакт БКВ, обтекается током и подтянуто реле РКВ. Отпадание реле РКО при включенном выключателе или реле РКВ при отключенном выключателе является признаком нарушения исправности соответствующей цепи и используется для подачи предупредительных сигналов персоналу. . Принципиальная развернутая схема управления масляным выключателем с ключом типа КСВФ показана на рис. 5-4. Схема соответствует отключенному положению выключателя, когда ключ управления находится в положении «отключено» (0), при котором замкнуты его цепи 1, 6 и 7 (см. рис. 5-2). Обмотка реле РКВ обтекается током через замкнутые блокировочные контакты БК2 и БКВ и обмотку контактора включения КП. Поэтому реле РКВ находится в подтянутом положении, чему соответствует показанное на схеме положение его контактов. В результате через цепь 6 ключа управления и контакт реле РКВ включена лампа Л, расположенная внутри ключа, которая освещает стеклянную призму, встроенную в его рукоятку. При соответствии положения ключа положению выключателя лампа горит немигающим светом, а при несоответствии — мигающим. Дистанционное включение производится ключом управления в три приема. Вначале ключ переводится в положение «предварительно включено» (В1) поворотом его рукоятки на 90°. При этом цепи 1, 6 и 7 размыкаются, а цепи 2, 3, 4 и 8 замыкаются. В таком положении ключа на лампу Л через цепь 4 подается прерывистое напряжение с шинки мигающего света (ШМС), вследствие чего призма начинает светиться мигающим светом, свидетельствующим о возникновении несоответствия. Прерывистое напряжение подается на шинку ШМС . постоянно от специальных прерывателей. Вслед за этим ключ поворотом на 45° переводится в положение «включить» (В2), в котором замыкается цепь 10 дистанционного включения. Выключатель включается н происходит переключение блокировочных контактов, размыкается БКВ и замыкается БКО, которое приводит к отпаданию реле РКВ и подтягиванию реле РКО. В результате лампа вновь получает напряжение от шинок ШС и начинает светиться немигающим светом. По прекращении мигания ключ переводится в положение «включено» (В). Дистанционное отключение производится в обратном порядке также в три приема переводом ключа в положения «предварительно отключено», «отключить» и «отключено».
|
Автоматическое отключение выключателя от релейной защиты создает несоответствие между положениями ключа и выключателя, что приводит к свечению призмы мигающим светом и появлению звукового аварийного сигнала, цепь которого замыкается на шинку звукового сигнала (ШЗС) через цепи 3 и 12 ключа и контакт реле РКВ. Аварийный сигнал снимается переводом ключа в положение «отключено». При обрыве цепи включения при отключенном выключателе или цепи отключения при включенном выключателе появляется звуковой предупредительный сигнал, цепь которого образуется через последовательно соединенные контакты реле РКО и РКВ. На рис. 5-5 приведена упрощенная принципиальная схема управления воздушного выключателя для одного полюса. Схема соответствует включенному положению выключателя. Трехфазный воздушный выключатель на напряжение 110 кВ и выше состоит из трех одинаковых полюсов, каждый из которых имеет самостоятельный пневматический привод. Воздушные выключатели на напряжения 15 и 35 кВ имеют один общий пневматический привод [Л. 38, 55]. Дистанционное управление воздушным выключателем производится с помощью электромагнитов (катушек) включения КВ и отключе- ния КО, которые при срабатывании воздействуют соответственно на включающий ВК и отключающий ОК клапаны пневматического привода. Нормальная работа воздушного выключателя обеспечивается при условии, что сжатый воздух в его баках находится под определенным давлением. Эта особенность работы воздушного выключателя требует непрерывного контроля за величиной давления сжатого воздуха и блокировки цепей управления при ее снижении. Для этой цели схема управления включает в себя контактный манометр КМ, через который по-дается минус оперативного тока на КВ и КО. При нормальном давлении контакт КМ замкнут, а при снижении до определенной величины размыкается и снимает минс с КВ и КО.
|
Сигнально-блокировочные контакты управляются специальным пневматическим приводом ПСБК, который производит их переключение при операциях включения и отключения выключателя. Дополнительным элементом схемы управления на рис. 5-5 по сравнению со схемой на рис. 5-3 является реле блокировки от многократных включений РБМ, имеющее две катушки — рабочую РК и удерживающую УК. Дистанционное отключение производится переводом ключа в положение «Откл.». При этом образуется цепь на КО от плюса через контакты ключа 1—3, катушку РК реле РБМ и блокировочный контакт СБКО-А, замкнутый при включенном выключателе. Второй конец КО присоединен к минусу через контакт КМ. Сердечник КО, втягиваясь, воздействует на отключающий клапан ОК, который при этом открывает дутьевой клапан ДК. Через клапан ДК сжатый воздух поступает из бака БСВ в гасительные камеры ГК, в результате чего происходит их кратковременное размыкание и гашение электрической дуги потоком сжатого воздуха. Одновременно часть сжатого воздуха поступает через обратный клапан ОБК в клапан отделителя КОД и, открывая его, впускает сжатый воздух в отделитель OД. Контакты отделителя размыкаются и удерживаются в таком положении давлением сжатого воздуха. При замыкании цепи на КО срабатывает также реле РБМ, по рабочей катушке которого проходит ток, и, замыкая контакт 3, осуществляет подхват отключающего импульса для обеспечения его необходимой длительности. Возврат реле РБМ в исходное положение происходит при размыкании контакта СБКО-А. Сжатый воздух, поступающий в отделитель, попадает также в привод ПСБК и производит переключение блокировочных контактов. При этом СБКО-А размыкается, а СБКВ-А замыкается, подготавливая цепь включения. Автоматическое отключение от релейной защиты происходит при замыкании контактов реле защиты РЗ аналогично рассмотренному выше. Дистанционное включение производится переводом ключа в положение «Вкл.». При этом образуется цепь на KB от плюса через контакт ключа 2—4, замкнутый контакт 1 реле РБМ, контакт СБКВ-А, замкнутый при отключенном выключателе. Второй конец KB присоединен к минусу через контакт КМ. Сердечник KB, втягиваясь, воздействует на включающий клапан ВК. Последний закрывает клапан отделителя КОД, который при этом прекращает доступ воздуха из бака БСВ в отделитель и сообщает его колонку с атмосферой. В результате понижения давления воздуха в колонке отделителя происходит смыкание его контактов, т. е. включение выключателя. При замыкании цепи на KB и втягивании ее сердечника замыкается блокировочный контакт БКВ-2А и осуществляет подхват включающего импульса для обеспечения его необходимой длительности. Размыкание цепи подхвата происходит при размыкании контакта СБКВ-А. Автоматическое включение от автоматики происходит при замыкании контактов реле автоматики РА аналогично рассмотренному выше. Блокировка от многократного включения на короткое замыкание осуществляется с помощью реле РБМ. Так, если выключатель будет включен на короткое замыкание, то сработает реле защиты РЗ и реле РБМ. Если при этом контакты 2—4 ключа управления КУ продолжают оставаться замкнутыми, то повторного включения произойти не может, так как цепь включения оказывается разомкнутой на контакте 1 сработавшего реле РБМ. Кроме того, замкнувшийся контакт 2 этого реле переключает плюс оперативного тока, поступающий от ключа КУ на удерживающую катушку УК реле РБМ. Благодаря этому реле РБМ удерживается в сработанном положении до тех пор, пока замкнуты контакты ключа управления в цепи включения. Последовательно с обмотками отключающих и включающих катушек включены проволочные сопротивления R, которые намотаны на общем каркасе с обмотками и конструктивно представляют одно целое с катушками. Как видно из схемы, нормально сопротивления R зашунтированы блокировочными контактами БКО и БКВ-1. Поэтому при подаче на катушку напряжения оперативного тока через нее в начале проходит большой ток 10—12 А, что создает на сердечнике катушки усилие такой величины, которое необходимо для воздействия на соответствующие клапаны пневматического привода выключателя. При втягивании сердечника блокировочные контакты БКО или соответственно БКВ-1 размыкаются и вводят сопротивление R. В результате яого ток в катушке резко снижается до величины порядка.3—4 А, что, с одной стороны, обеспечивает удерживание сердечника во втянутом положении и, с другой стороны, облегчает работу блокировочных контактов СБКО, СБКВ, которые производят размыкание цепей включения и отключения.
|
На рис. 5-6 приведена полная схема управления воздушным выключателем на напряжения 110—500 кВ с ключом управления типа КВ. Обозначения аппаратов на схеме рис. 5-6 те же, что и на рассмотренной ранее упрощенной схеме рис. 5-5. По сравнению со схемой рис. 5-5 рассматриваемая схема имеет следующие отличия. Поскольку каждый полюс выключателя имеет самостоятельный привод, то полная схема содержит утроенное количество включающих и отключающих катушек, а также сиггнально-блокировочных контактов. Аппараты, относящиеся к полюсам разных фаз, имеют в обозначениях дополнительные символы А, В или С. Аппараты общие для всех трех полюсов таких символов не имеют. Ключ управления КУ типа KB имеет три положения: «Вкл», «Откл» и нейтральное, причем после операций включения или отключения ключ возвращается в нейтральное положение. Поэтому в схеме управления для запоминания предшествующей команды применено специальное промежуточное реле фиксации РПФ, в качестве которого используются двухпозиционные промежуточные реле типов РП-8, РП-9, РП-11 или РП-12. Реле РПФ имеет две обмотки О и В (см. рис. 5-6), последовательно с которыми включены блокировочные контакты этого же реле БО и БВ. Особенность конструкции двухпозициошюго реле состоит в том, что при подаче напряжения на одну из обмоток оно переключает как основные, так и блокировочные контакты (замыкает разомкнутые и размыкает замкнутые) и при снятии напряжения остается в этом поло женин. При подаче напряжения в другую обмотку реле вновь срабатывает и переключает основные и блокировочные контакты в положение, противоположное предыдущему состоянию, и при снятии напряжения остается в этом новом положении. В схеме управления выключателем реле РПФ используется для сигнализации положения выключателя, для сигнализации аварийного отключения и для запуска АПВ [Л. 14]. Минус оперативного тока подается на включающие и отключающие катушки не непосредственно через контакт контактного манометра КМ, как показано на упрощенной схеме рис. 5-5, а через промежуточное реле РПД, цепь рабочей катушки которого замыкает контакт манометра КМ (см. рис. 5-6). При нормальном давлении сжатого воздуха контакт КМ замкнут, реле РПД находится в сработанном положении и его контакты в цепи КО и KB также замкнуты. Последовательно с контактами реле РПД включены его удерживающие катушки. Это сделано для того, чтобы не разомкнулись цепи включения и отключения, если в процессе операции понизится давление сжатого воздуха и контактный манометр разомкнет свой контакт. Два контакта и две удерживающие катушки реле РПД включены для повышения надежности и уменьшения падения напряжения. Параллельно удерживающим катушкам включено сопротивление R (примерно 500 Ом) для обеспечения работы реле РПО и РПВ при низком давлении воздуха, когда контакты реле РПД разомкнуты. Как видно из схемы на рис. 5-6, блокировочные контакты в цепи отключающих катушек СБКО всех трех фаз соединены параллельно. Это сделано для того, чтобы обеспечить возможность отключения выключателя даже в том случае, если из-за неисправности не переключатся один или даже два блокировочных контакта или если на них нарушится контакт. Наоборот в цепи включающих катушек блокировочные контакты СБКВ всех трех фаз соединены последовательно. Это сделано для того, чтобы нельзя было включить выключатель, если не переключился хотя бы один блокировочный контакт или на нем нарушился контакт, что является признаком неисправности цепей управления. Различные неисправности как в электрической схеме управления, так и в пневматической системе индивидуальных приводов воздушных выключателей могут приводить к отказам на включение или отключение отдельных приводов выключателя, т. е. к неполнофазным включениям и отключениям. При неполнофазном включении или отключении выключателя в сети возникает несимметричный режим, который может вызвать ложные действия защиты от однофазных коротких замыканий линий и трансформаторов как на данной, так и на других подстанциях (см. гл. 7 и 8). Поэтому для быстрой ликвидации несимметричного режима в схеме управления воздушными выключателями предусмотрена защита от неполнофазных включений (защита от непереключения фаз). Защита осуществляется с помощью сигналыю-блокировочных контактов СБК-1А (В, С) и СБК-2А (В, С), которые при нормальной работе полюсов выключателя находятся в противоположных положениях, и промежуточного реле РПН (см. рис. 5-5 и 5-6). Блокировочные контакты соединены в параллельно-последовательную схему, которая создает цепь на катушку реле РПН, если одновременно оказываются замкну- тыми хотя бы часть блокировочных контактов СБК-1 и СБК-2, что имеет место при отказе на включение или отключение отдельных полюсов выключателя. Например, если бы при включении выключателя не включился полюс фазы А (рис. 5-6), то блокировочный контакт СБК-1 А был бы замкнут, а СБК-2А разомкнут и была бы образована цепь на катушку реле РПН через СБК-1А и замкнутые контакты СБК-2В и СБК-2С. Реле РПН при срабатывании своим контактом замыкает цепь отключения включившихся полюсов, которые при этом отключаются и ликвидируют несимметричный режим. Контакт реле РПО в цепи катушки реле РПН, разомкнутый при отключенном выключателе, замыкается при его включении с некоторым замедлением, для того чтобы не сработало реле РПН из-за неодновременного включения полюсов выключателя, когда могут быть кратковременно замкнуты одновременно блокировочные контакты СБК-1 и СБК-2. Операции включения и отключения воздушных выключателей требуют подачи в его пневматическую систему определенного количества воздуха, что обеспечивается соответствующей длительностью втянутого состояния сердечников KB и КО, воздействующих на пусковые клапаны пневматических приводов выключателя. Необходимая для этого длительность замыкания цепи KB и КО создается путем подхвата командного импульса на KB от блокировочного контакта БКВ-2А и на КО от контакта РБМ3 (см. рис. 5-6). Размыкание цепи KB производится блокировочными контактами СБКВ, а КО — СБКО, которые регулируются так, чтобы размыкание этих цепей происходило после полного завершения соответствующей операции. В цепи включения, где блокировочные контакты СБКВ полюсов всех трех фаз соединены последовательно, при включении выключателя обеспечивается надежное размыкание цепи, так как для этого достаточно, чтобы переключился хотя бы один блокировочный контакт. В цепи отключения, где блокировочные контакты СБКО полюсов всех трех фаз соединены параллельно, для размыкания цепи необходимо, чтобы при отключении выключателя переключились все блокировочные контакты. При непереключении хотя бы одного из блокировочных контактов СБКО отключающие катушки всех полюсов будут длительно обтекаться током и могут повредиться, так как на такой режим не рассчитаны. Поэтому для предотвращения повреждения отключающих катушек выключателя при непереключении фаз в схеме управления предусмотрено специальное реле ограничения длительности импульса на включение РО. Контакты этого реле включены в цепь подхвата (последовательно с контактом реле РБМ3), а цепь катушки замыкается контактом реле РПН и ключом управления КУ. Нормально реле РО находится в подтянутом положении и держит контакты замкнутыми. Три контакта этого реле соединены последовательно для облегчения разрыва тока в цепи КО. Если при отключении выключателя произойдет непереключение фаз или блокировочных контактов СБКО, то реле РПН сработает и разомкнет цепь катушки реле РО, которое, отпадая, с некоторым замедлением своими контактами разомкнет цепь подхвата в цепи КО. Контакты ключа КУ замыкают цепь катушки реле РО на время операции отключения для того, чтобы это реле не отпадало при кратковременном срабатывании и размыкании контакта реле РПН, что может происходить из-за неодновременности отключения полюсов выключателя и переключения блокировочных контактов СБКО, СБКВ.
