- •Ответы к экзамену по дисциплине: Релейная защита и автоматика систем электроснабжения:
- •1)Назначение релейной защиты и автоматики в системах электроснабжения
- •2)Повреждения и ненормальные режимы в системах электроснабжения.
- •3)Основные требования пуэ к релейной защите от повреждений и ненормальных режимов.
- •4)Ручное и дистанционное управление и сигнализация. Дистанционное управление контакторами и нереверсивными и реверсивными магнитными пускателями.
- •5)Дистанционное управление выключателем с электромагнитным приводом. Сигнализация и блокировка от прыганий.
- •6)Источники оперативного тока. Назначение, общие требования. Постоянный оперативный ток. Выпрямленный оперативный ток. Переменный оперативный ток. Шот
- •Источники постоянного оперативного тока
- •Переменный оперативный ток
- •7)Способы включения реле и способы их воздействия на выключатели.
- •8)Изображение схем рза. Основные требования к схемам защиты.
- •9)Устройства центральной сигнализации. Назначение, принцип действия аварийной, предупреждающей сигнализации.
- •10)Условия работы трансформаторов тока в схемах рза. Методика выбора тт для питания схем рза. 10% кратность. Фильтры симметричных составляющих тока.
- •Расчет нагрузки в зависимости от схемы соединения трансформаторов тока
- •11)Схемы соединения тт и обмоток реле в схемах релейной защиты. Векторные диаграммы токов при различных видах повреждений
- •Расчет нагрузки в зависимости от схемы соединения трансформаторов тока
- •12)Трансформаторы напряжения в схемах рза. Схемы включения тн и схемы соединения обмоток тн
- •13)Достоинства и недостатки микропроцессорных защит.
- •14)Максимальная токовая защита, принцип действия, Обеспечение селективности мтз.
- •15)Схемы мтз с независимыми выдержками времени, выполненными по схемам полной и неполной звезды, область применения, принцип действия.
- •Неполная звезда.
- •Полная звезда.
- •16)Выбор параметров срабатывания максимальной токовой защиты.
- •17)Токовая отсечка лэп. Принцип действия, выбор параметров срабатывания.
- •18)Токовая отсечка линий с двухсторонним питанием. Выбор параметров срабатывания.
- •19)Расширение защищаемой зоны токовой отсечки со ступенчатой характеристикой выдержки времени. Выбор параметров срабатывания.
- •20)Схемы токовой отсечки со ступенчатой характеристикой выдержки времени на постоянном оперативном токе. Область применения, выбор параметров срабатывания
- •21)Применение микропроцессорных устройств для защит лэп, выбор параметров срабатывания. Построение карты селективности мтх с зависимой характеристикой.
- •22)Направленные токовые защиты, назначение принцип действия. Выбор параметров срабатывания.
- •Принцип действия защиты.
- •23)Защита кольцевых сетей. Каскадное действие защит.
- •24)Принципиальные схемы мтнз на постоянном оперативном токе, схемы мтнз с применением микропроцессорных защит.
- •25)Принцип действия продольной дифференциальной защиты линий. Выбор параметров срабатывания. Расчет тока небаланса, коэффициента чувствительности Способы повышения коэффициента чувствительности.
- •26)Назначение, принцип действия поперечной дифференциальной защиты линий. Выбор параметра срабатывания. Оценка и область применения поперечной дифференциальной защиты линий.
- •27)Защиты от замыканий на землю, размещение защит от замыкания на землю в сети с изолированной нейтралью.
- •28)Резистивное заземление нейтрали в сетях 6,10,35 кВ. Назначение Выбор величины сопротивления заземления нейтрали.
- •29)Принцип действия дифференциально-фазной высокочастотной защиты лэп.
- •30)Дистанционная защита лэп, назначение, принцип действия и область применения. Принцип выбора уставок действия защиты.
- •Схемы включения дистанционных органов на ток и напряжение
- •31)Виды повреждений и ненормальных режимов синхронных генераторов.
- •32)Защиты низковольтных генераторов мощностью до 1мВт. Выбор параметров срабатывания.
- •33)Защиты высоковольтных генераторов. Выбор параметров срабатывания.
- •34)Виды повреждений и ненормальных режимов трансформаторов.
- •35)Защита трансформаторов плавкими предохранителямим. Область применения, Выбор тока плавкой ставки.
- •36)Токовые защиты трансформаторов. Мтз двух и трехобмоточных трансформаторов. Защита от перегрузки. Выбор параметров срабатывания.
- •37)Токовые защиты обратной и нулевой последовательности трансформаторов. Принцип действия и область применения.
- •38)Принцип действия и особенности дифференциальной токовой защиты трансформаторов. Разновидности схем дифференциальной токовой защиты трансформаторов.
- •39)Дифференциальная токовая отсечка трансформатора. Принцип действия, пусковые органы, выбор основных параметров
- •40)Дифференциальная токовая защита трансформатора с промежуточным быстронасыщающимися трансформаторами. Основные органы, принцип действия, выбор параметров срабатывания с реле типа рнт-565.
- •41)Дифференциальная токовая защита трансформатора с применением реле, имеющих торможение. Основные органы, принцип действия, выбор параметров срабатывания. Принцип действия реле типа дзт.
- •42)Газовая защита трансформаторов, принцип действия, назначение, область применения.
- •44)Защита шин, виды повреждений, принцип действия, основные требования, способы выполнения и основные типы защит шин. Токовые защиты шин. Выбор параметров срабатывания.
- •45)Дифференциальная токовая защита шин. Неполные дифференциальные защиты шин. Выбор параметров срабатывания. Особенности апв шин.
- •46)Требования к защите конденсаторных установок до 1000 в и выше 1000 в. Защита ку. Выбор параметров срабатывания. Защита конденсаторов плавкими предохранителями, требования к ним.
- •47)Защита конденсаторной установки высокого напряжения. Мтз, защита от перегрузки, защита от повышения напряжения. Выбор параметров срабатывания
- •48)Виды повреждений и ненормальных режимов работы двигателей переменного тока.
- •49)Защита двигателей напряжением до 1000 в. Выбор параметров срабатывания.
- •50)Защита двигателей напряжением выше 1000 в. Выбор параметров срабатывания.
- •51)Устройства апв. Назначение, основные разновидности, требования к устройствам апв. Выдержка времени апв.
- •52)Принцип действия апв на постоянном оперативном токе с использованием реле типа рпв. Особенности апв лэп с двухсторонним питанием.
- •Автоматическое повторное включение линий.
- •Устройство апв однократного действия на подстанциях с переменным оперативным током.
- •Устройства апв двукратного действия на подстанциях с переменным оперативным током.
- •Устройства апв на выключателях с электромагнитными приводами на подстанциях с постоянным или выпрямленным оперативным током.
- •Взаимодействие устройств aiib и релейной защиты.
- •53)Устройства авр, назначение, основные требования.
- •54)Принцип построения схем авр. Выбор параметров срабатывания авр.
- •Преимущества и недостатки различных типов авр с позиций перечисленных требований.
- •55)Автоматическая частотная разгрузка в системах электроснабжения. Назначение, принцип действия.
- •56)Схема включения реле частоты. Выбор параметров срабатывания ачр. Согласованность времени действия ачр и чапв.
4)Ручное и дистанционное управление и сигнализация. Дистанционное управление контакторами и нереверсивными и реверсивными магнитными пускателями.
Ответ: Местное управление – при этом управлении орган управления и источник энергии находятся на одном месте (на одном пункте управления). Дистанционное управление – при этом в линию связи включается дополнительное промежуточное линейное реле, через контакты которого осуществляется управление двигателем. Сигнализация на подстанции бывает: звуковая – это звонок на территории подстанции и помещении подстанции, сирена на случай пожара и световая – это лампочка показывающая состояние объекта. Сигнализация бывает – диспетчерская – это информация, что идёт диспетчеру; местная – это для дежурного (например: блинкеры); смешанная – это и диспетчерская и местная.
Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.
Электромагнитный контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего с помощью электромагнитного привода.
В отличии от контакторов постоянного тока режим включения контакторов переменного тока более тяжел, чем режим отключения из за пускового тока асинхронных электродвигателей с короткозамкнутым ротором. Кроме этого наличие дребезга контактов при включении приводит в этих условиях к большому износу контактов. Поэтому борьба с дребезгом при включении здесь приобретает первостепенное значение.
Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.
Схема подключения нереверсивного магнитного пускателя
На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.
Рис. 1. Схема включения нереверсивного магнитного пускателя: а - монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя
На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 - С1, Л2 - С2, Л3 - С3) и одним вспомогательным замыкающим контактом (3-5).
Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.
Принцип действия схемы включения нереверсивного магнитного пускателя
Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 - 5, что создаст параллельную цепь питания катушки магнитного пускателя.
Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.
После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.
Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.
Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.
Схема подключения реверсивного магнитного пускателя
В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.
Рис. 2. Схемы включения реверсивного магнитного пускателя
Принцип действия схем включения реверсивного магнитного пускателя
Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.
В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.
Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.
Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.
В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.
