- •1. Погрешность однократного измерения
- •2. Обработка результатов многократных измерений одной и той же величины
- •3. Погрешности косвенных измерений
- •Работа № 1 изучение законов постоянного тока
- •1. Основные понятия
- •2. Законы постоянного тока
- •2.1. Закон Ома для участка цепи
- •2.2. Закон Джоуля - Ленца
- •2.3. Правила Кирхгофа
- •Описание экспериментальной установки
- •Выполнение работы
- •5. Контрольные вопросы
- •Работа №2 определение удельного заряда электрона с помощью вакуумного диода
- •1. Общие сведения об электровакуумных приборах
- •2. Физические процессы в вакуумном диоде
- •3. Вывод приближенной формулы для определения удельного заряда электрона
- •4. Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №3 изучение полупроводникового диода
- •Механизм проводимости полупроводника
- •Вольт – амперная характеристика p – n перехода
- •4. Полупроводниковый диод
- •5. Описание экспериментальной установки
- •6. Выполнение работы
- •7. Контрольные вопросы
- •Работа № 4 исследование мощности источника тока
- •1. Основные понятия
- •2. Описание экспериментальной установки
- •3. Выполнение работы
- •4. Контрольные вопросы
- •Работа № 5 изучение процессов заряда и разряда конденсатора
- •Процесс заряда конденсатора
- •Разряд конденсатора
- •Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №6 изучение дифференцирующих и интегрирующих цепей
- •Дифференцирующие цепи
- •И нтегрирующие цепи
- •Описание экспериментальной установки
- •Выполнение работы
- •5. Контрольные вопросы
- •Работа № 7 изучение измерительного моста постоянного тока
- •1. Мостовой метод
- •2. Индикаторы баланса
- •3. Погрешность измерения мостовым методом
- •Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №8 изучение работы выпрямителей и сглаживающих фильтров
- •1. Однополупериодный выпрямитель
- •2. Сглаживающие фильтры
- •3. Двухполупериодные выпрямители
- •4. Описание экспериментальной установки
- •5. Выполнение работы
- •6. Контрольные вопросы
- •Работа № 9 определение удельного заряда электрона методом магнетрона
- •1.Основные понятия
- •2. Описание экспериментальной установки
- •3. Выполнение работы
- •4. Контрольные вопросы
4. Описание экспериментальной установки
Принципиальная электрическая схема установки приведена на рисунке 2.
Рис. 2.
На плате установлена радиолампа 6Ц5С - двойной диод, подключен один из диодов лампы. Цилиндрический катод располагается внутри цилиндрического анода коаксиально, т.е. оси цилиндров совпадают. Для такой конфигурации электродов зависимость тока от напряжения имеет следующий вид
|
|
(12) |
Здесь L = (10,0 0,2) мм - длина анода, r = (2,5 0,1мм) - радиус анода, b - коэффициент, зависящий от соотношения радиусов анода и катода. Для данной лампы b = 0.081 0.003.
Анодное напряжение можно регулировать с помощью транзистора, вращая ручку потенциометра, включенного в его базовую цепь.
Выполнение работы
Для определения анодного тока лампы измеряют падение напряжения на резисторе R.
1. Снять зависимость анодного тока от анодного напряжения.
2. Построить график зависимости квадрата анодного тока от куба напряжения между анодом и катодом.
3. Вычислить величину удельного заряда электрона на основании формулы (12).
Контрольные вопросы
Физические процессы в вакуумном диоде.
Вывод уравнения Богуславского – Ленгмюра.
Нарисовать график зависимости I 2(U3). Как по нему можно найти удельный заряд электрона?
Работа №3 изучение полупроводникового диода
Механизм проводимости полупроводника
В зависимости от своих электропроводящих свойств все вещества делятся на три класса: проводники (удельное сопротивление порядка 10-6 10-4 Ом/см), полупроводники (105 108 Ом/см) и диэлектрики (109 1015 Ом/см). К полупроводникам относятся наиболее часто применяемые в электронике кремний и германий, а также некоторые окислы, сульфиды и другие химические соединения и элементы. В полупроводниках валентные электроны достаточно прочно удерживаются в ковалентных связях, но все же менее прочно, чем в диэлектриках. Под действием внешних факторов (таких как нагревание, освещение, радиация и т.д.) в полупроводниках некоторые валентные электроны отрываются от своих атомов и могут свободно перемещаться по объему кристалла. На месте оторвавшегося электрона остается свободное место («дырка»), которое может быть занято валентным электроном соседнего атома, который, в свою очередь, также оставляет после себя дырку и т.д. Таким образом дырка как бы перемещается по объему кристалла. При изучении процессов в полупроводниках удобно рассматривать такую дырку как некоторую виртуальную свободную положительно заряженную частицу с зарядом, равным по модулю заряду электрона.
Можно считать, что в полупроводнике непрерывно идет процесс образования пар свободных заряженных частиц – электронов и дырок. Одновременно идет процесс рекомбинации – при встрече электрона и дырки они связываются. В результате этих двух процессов устанавливается постоянная (при неизменных внешних условиях) концентрация свободных зарядов, находящихся в хаотическом тепловом движении, которые и обеспечивают проводимость полупроводника. При комнатной температуре концентрация свободных электронов (и равная ей концентрация дырок) составляет порядка 1 на 107 - 109 атомов кристалла, и с ростом температуры возрастает. Поэтому удельное сопротивление чистого полупроводника с ростом температуры уменьшается.
При внесении в полупроводник даже незначительного количества примесей концентрация свободных электронов или дырок может резко возрасти. Если валентность примеси больше валентности полупроводника, то «лишние» валентные электроны атомов примеси не задействованы в ковалентных связях и могут относительно легко отрываться, не оставляя после себя дырки. В полупроводнике с такой (донорной) примесью (он называется n – полупроводником, от латинского слова negativ –отрицательный) резко возрастает концентрация свободных электронов. Если валентность примеси меньше, чем у основного материала (акцепторная примесь), то столь же резко возрастает концентрация свободных дырок. Полупроводник с акцепторной примесью называется p – полупроводником (от слова positiv – положительный).
Важно отметить, что и после введения примеси в полупроводниках остаются свободные заряды обоих знаков, но в существенно разных концентрациях. Например, в p–полупроводнике кроме «примесных» дырок имеется относительно малое количество «собственных» электронов (и «собственных» дырок).
2. P–N переход
Если плотно соединить два кристалла примесного полупроводника с разными типами проводимости, то в районе контакта происходят следующие процессы:
Рис.1.
Свободные электроны из n – области диффундируют в p – область и рекомбинируют там с дырками. На месте ушедших и рекомбинировавших электронов остается нескомпенсированный положительный заряд ионов кристаллической решетки. Аналогично ведут себя и дырки p – области. В результате вблизи границы образуются тонкие слои с объемными зарядами и создается электрическое поле p – n перехода напряженностью Е, которое препятствует дальнейшей диффузии примесных носителей. Для собственных носителей (электронов в p – области и дырок в n – области ) это поле является ускоряющим, и через границу раздела протекает ток собственных носителей, в результате чего объемный заряд уменьшается. Устанавливается динамическое равновесие – общий ток примесных носителей равен по величине и противоположен по направлению общему току собственных, так что суммарный ток через переход равен нулю, и устанавливается определеная постоянная величина объемного заряда, а также, соответственно, и постоянная напряженность поля Е.
