- •1. Погрешность однократного измерения
- •2. Обработка результатов многократных измерений одной и той же величины
- •3. Погрешности косвенных измерений
- •Работа № 1 изучение законов постоянного тока
- •1. Основные понятия
- •2. Законы постоянного тока
- •2.1. Закон Ома для участка цепи
- •2.2. Закон Джоуля - Ленца
- •2.3. Правила Кирхгофа
- •Описание экспериментальной установки
- •Выполнение работы
- •5. Контрольные вопросы
- •Работа №2 определение удельного заряда электрона с помощью вакуумного диода
- •1. Общие сведения об электровакуумных приборах
- •2. Физические процессы в вакуумном диоде
- •3. Вывод приближенной формулы для определения удельного заряда электрона
- •4. Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №3 изучение полупроводникового диода
- •Механизм проводимости полупроводника
- •Вольт – амперная характеристика p – n перехода
- •4. Полупроводниковый диод
- •5. Описание экспериментальной установки
- •6. Выполнение работы
- •7. Контрольные вопросы
- •Работа № 4 исследование мощности источника тока
- •1. Основные понятия
- •2. Описание экспериментальной установки
- •3. Выполнение работы
- •4. Контрольные вопросы
- •Работа № 5 изучение процессов заряда и разряда конденсатора
- •Процесс заряда конденсатора
- •Разряд конденсатора
- •Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №6 изучение дифференцирующих и интегрирующих цепей
- •Дифференцирующие цепи
- •И нтегрирующие цепи
- •Описание экспериментальной установки
- •Выполнение работы
- •5. Контрольные вопросы
- •Работа № 7 изучение измерительного моста постоянного тока
- •1. Мостовой метод
- •2. Индикаторы баланса
- •3. Погрешность измерения мостовым методом
- •Описание экспериментальной установки
- •Выполнение работы
- •Контрольные вопросы
- •Работа №8 изучение работы выпрямителей и сглаживающих фильтров
- •1. Однополупериодный выпрямитель
- •2. Сглаживающие фильтры
- •3. Двухполупериодные выпрямители
- •4. Описание экспериментальной установки
- •5. Выполнение работы
- •6. Контрольные вопросы
- •Работа № 9 определение удельного заряда электрона методом магнетрона
- •1.Основные понятия
- •2. Описание экспериментальной установки
- •3. Выполнение работы
- •4. Контрольные вопросы
2. Сглаживающие фильтры
Д
ля
большинства устройств пульсация
питающего напряжения нежелательна, и
для уменьшения ее применяют различные
сглаживающие фильтры. Простейший фильтр
– это конденсатор достаточно большой
емкости, подключенный параллельно
сопротивлению нагрузки:
Рис. 2.
Быстрота зарядки и разрядки конденсатора определяется произведением его емкости на сопротивление цепи зарядки или разрядки (см.работу № 5). За время воздействия положительной полуволны (от 0 до t1) конденсатор достаточно быстро заряжается через малое прямое сопротивление диода и внутреннее сопротивление источника напряжения (у идеального источника напряжения внутреннее сопротивление равно нулю) почти до амплитудного значения переменного напряжения Е. В момент t1 диод оказывается включенным в обратном направлении, и конденсатор достаточно медленно разряжается через сравнительно большое сопротивление нагрузки (до момента t2), далее диод открывается и конденсатор подзаряжается и т.д. Очевидно, что чем больше емкость конденсатора и сопротивление нагрузки, тем больше постоянная составляющая UСРЕД и меньше амплитуда напряжения пульсаций UП.
В качестве фильтра в случае чисто активной (омической) нагрузки можно использовать также включенную последовательно с нагрузкой катушку с большой индуктивностью (дроссель). Дроссель с нагрузкой образуют частотно-зависимый делитель напряжения. Для постоянной составляющей сопротивление дросселя равно относительно малому активному сопротивлению провода обмотки RОБМ, а для переменного напряжения пульсаций сопротивление дросселя RL = L, где –циклическая частота пульсаций (ω = 2πν,где ν – частота пульсаций), L –индуктивность дросселя. Если выполняется соотношение RОБМ RН RL, то почти все напряжение постоянной составляющей приходится на нагрузку, а почти все напряжение пульсаций падает на дросселе. Если же RОБМ сравнимо с RН , то часть энергии, поступающей от выпрямителя, бесполезно теряется на нагрев обмотки дросселя. Чем больше сопротивление нагрузки при постоянной индуктивности дросселя, тем меньше потери энергии, но и тем больше напряжение пульсаций на нагрузке.
Часто применяют Г-образный сглаживающий фильтр:
Рис.3
Для эффективной работы фильтра (подавления пульсаций подаваемого на фильтр выпрямленного напряжения UВХ ) необходимо, чтобы сопротивление дросселя было много больше сопротивления конденсатора, т.е. ωLФ >>1/(ωCФ.) При большом сопротивлении нагрузки для уменьшения габаритов фильтра в данной схеме часто вместо дросселя используют сопротивление.
Эффективность работы фильтра можно характеризовать коэффициентом подавления КП , равным отношению величин пульсаций на входе и выходе фильтра.
Следует отметить, что форма выпрямленного напряжения сильно отличается от синусоидальной.
3. Двухполупериодные выпрямители
О
ни
используют обе полуволны питающего
напряжения. Если выпрямитель питается
от вторичной обмотки трансформатора,
то можно использовать схему с двумя
диодами, при этом половины вторичной
обмотки должны иметь одинаковое число
витков:
Рис. 4.
Во время « верхней» полуволны напряжения Е открыт диод D1 (т.е. включен в прямом направлении), а диод D2 закрыт, во время «нижней», наоборот, открыт диод D2.
Т
ак
же выглядит напряжение на нагрузке и в
мостовой
схеме
двухполупериодного выпрямителя (рис.
4).
Рис. 5.
Здесь оказываются включенными в прямом направлении и пропускают ток поочередно пары диодов D1 и D3, D2 и D4. Сглаживающие фильтры при использовании двухполупериодных выпрямителей работают эффективнее, чем с однополупериодными, т.е. при одинаковых фильтрах и входных переменных напряжениях схемы с двухполупериодным выпрямлением обеспечивают на нагрузке более высокое значение напряжения постоянной составляющей и меньшую амплитуду пульсаций.
