Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 12.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.65 Mб
Скачать

Типы структур управления торговыми сетями.

Успешная работа таких сложных структур, как сети магазинов, во – многом определяется правильным выбором принципов построения системы управления.

В архитектуре принципиально различаются два подхода: использование распределенных баз данных (децентрализованная система управления) и централизованной базы данных (централизованная система управления).

И централизованные, и децентрализованные сети получили приблизительно одинаковое распространение. Стремясь разобраться, что же лучше, консалтинговые и торговые компании тратят огромные деньги на исследования.

Эффективными являются обе формы управления. Выбор зависит от особенностей сети, от целей, которые она поставила перед собой.

Децентрализованная форма хороша своей гибкостью. Она подходит сетям,

где есть и супермаркеты, и минимаркеты, и дисканты. Или, если магазины расположены в разных экономических районах: в центре, где нужно ориентироваться на офисных служащих и жителей элитных домов, в

жилых массивах заселенных людьми со средним достатком, в промышленной зоне.

При децентрализованном управлении, магазин, сам определяет структуру заказа. Т.е. будет заказывать товар (что является главным признаком самостоятельного управления) исходя из потребительских потребностей в своем районе, что будет повышать рентабельность такого магазина.

При централизованной системе управления добиться каких-то изменений в работе отдельного магазина, сложно. Да и цена таких вариаций будет высока. Дополнительный оборот, полученный за счет приспособления к местным условиям, при централизованной системе может быть перекрыт дополнительными накладными расходами.

Преимущество централизации в значительном снижении затрат на персонал. Единые бухгалтерия, отдел закупок, информационный отдел расположены в центральном офисе и обслуживают сразу всю сеть. За счет этого количество персонала в сетевых магазинах сокращается в 2-3 раза.

Итак, основные принципы выбора типа сети сводятся к тому, что если магазины схожи по классу, то более эффективной будет централизация. Если магазины расположены в очень различающихся между собой районах, если в сети больше двух разновидностей магазинов, то логичнее ввести децентрализованную систему управления.

Классификация каналов связи.

Есть три варианта автоматизации розничной сети по типу каналов связи.

Он-лайн. Первый вариант - создать полностью он-лайновую систему. Это означает, что в каждом из магазинов работает не удаленный компьютер, а терминал. То есть каждая строка текста немедленно передается по проводам на центральный компьютер. С точки зрения технологии автоматизации магазины собраны вместе, в пределах одной локальной сети. Проще говоря, он-лайновая автоматизация означает, что центральный офис - это магазин, а вот все магазины сети - его торговые секции.

У этого варианта два минуса:

Во-первых, нужны дорогие качественные (оптоволоконные) линии связи. Из-за этого каждое последующее рабочее место в удаленной "торговой секции" стоит больших денег. Кроме того, оптоволокно прокладывают по линиям метрополитена, и потому чем дальше магазин находится от ближайшей станции метро, тем дороже стоимость рабочих мест в удаленных магазинах.

Именно из-за этого первый вариант автоматизации совершенно не подходит для сетей, в которых магазины чрезвычайно удалены друг от друга, находятся в разных городах. А ведь будущее за региональными сетями.

Второй минус в том, что если связь по этим линиям прервется хоть на пару минут, то остановится полноценная работа всей сети. Единственное, что можно будет делать - продавать выставленный до аварии товар в торговом зале. Благо, кассы могут работать в автономном режиме довольно долго. Для дискаунтов с очень ограниченным, редко меняющимся ассортиментом - это неплохой способ автоматизации.

Механизм репликации. Второй вариант именуется механизм репликации. В отличие от оптоволоконного, этот вариант недорогой, но неспешный.

Репликация - копирование изменений в таблицах базы данных и их пересылка на удаленные сервера без учета особенностей розничной торговли. При репликации есть момент времени, когда новый товар уже дошел в систему удаленного магазина, а новые цены еще нет. В розничной торговле такая медлительность может привести к большим неприятностям.

Интенсивное использование, скорее всего, приведет к очень большой нагрузке на линии связи. Так что если связь осуществляется посредством репликации, то придется обмениваться информацией не больше раза в день, скажем, только для передачи отчета.

Именно так репликацию используют оптовые компании. Оптовики, занявшись розницей, стремятся перенести привычный механизм в новый вид бизнеса. Либо, если нужно все и сразу, то модернизировать стандартный механизм репликации. Сделав специальные настройки механизма репликации (что и в какой последовательности передавать), можно увеличить скорость передачи информации. Чем быстрее хочется получать данные, тем больше сил и денег придется вложить в разработку настроек.

При повреждении линии связи сеть, работающая на механизме репликации, вынуждена простаивать.

Связь на базе документов. Третий подход - это связь на базе документов. Он основан на том, что никаких изменений в магазине не может произойти, если туда не пришел какой-либо новый документ: либо из центрального офиса, либо от поставщика или другой организации. То есть все виды связи между магазинами представляют собой пересылку, во-первых, одного или нескольких документов, во-вторых, полной информации по всем содержащимся в них товарам. При этом в случае быстрой линии связи документы можно упаковывать в письмо десятками, в случае плохих линий связи или использования интернета - по одному.

Кроме полной свободы по оптимизации использования линий связи и легкости использования интернета для регионов, этот метод понятен профессиональным работникам торговли. Поэтому надежность такой системы очень высока, а область применения практически неограниченна. Связь на уровне документов на сегодняшний день наиболее предпочтительна.

Автоматизация и технологическое оснащение торговой сети.

Для автоматизации магазина необходимы три составляющие:

  • сервер РОS – терминалов (Point-Of-Sale),

  • сервер весов;

  • система автоматизации, которая отвечает выбранной вами стратегии управления сетью.

На рис.12.4. представлена схема взаимодействия программного обеспечения торговой сети.

Рис.12.4. Схема взаимодействия программного обеспечения торговой сети.

Сервер POS-терминалов выполняет функции:

по учету рабочего времени кассиров,

по распределению различных обязанностей между ними,

по изменению цен.

Все это позволяет сделать работу POS-терминалов гораздо более эффективной.

Не обойтись и без сервера электронного торгового оборудования, то есть весов. В любом супермаркете электронных весов столько же или даже больше, чем POS-терминалов. Часто поставщики поставляют товар не в самой удобной расфасовке, и супермаркеты вынуждены перефасовывать товар.

Сервер торгового оборудования определяет, какие весы в какое время обновлять.

Рассмотрим работу фронт-офисной и бэк-офисной систем торговой сети. Фронт-офисная система работает на POS-терминале.

POS-терминал - это компьютер в индустриальном исполнении с некоторыми дополнительными функциями, которые собраны в корпусе кассового аппарата. Именно эти дополнительные функции (как для кассы, так и для компьютера) и определяют колоссальное преимущество POS-терминала перед обычной кассой, оправдывая разницу в ценах.

Касса только регистрирует факт продажи. POS-терминал дает возможность собирать информацию о продаже. Время покупки, сумма чека, наименование всех товаров, товары, привлекшие покупателя своей скидкой: все эти данные являются ценнейшей маркетинговой информацией, грамотное использование которой повышает прибыльность магазина.

Помимо регистрации продаж, в электронном виде фиксируются приходные документы, в итоге компьютеризованным оказывается весь процесс товародвижения. Только в этом случае торговая система получает достаточно данных, чтобы выдавать какие-то рекомендации, отчеты, и компьютер становится эффективным помощником в управлении магазином.

Еще одно достоинство POS-терминалов - возможность использования штрихового кодирования, что в несколько раз увеличивает скорость продаж по сравнению с обычными кассами.

Следующая составляющая программного обеспечения - бэк-офис -представляет собой собственно торговую систему, которая занимается поддерживанием ассортимента, заказами, управлением ценами.

Ни одна финансовая/бухгалтерская программа не является торговой системой и не может решать сложнейшие проблемы управления торговым процессом. Главное отличие финансово-бухгалтерской системы в том, что она предназначена для регистрации результатов, а не управления технологическим процессом. Кроме того, передача бухгалтерской информации может отставать на неделю-две, и эти сроки ни на что не повлияют.

Торговля же без оперативных данных обойтись не может.

Система управления розничной торговлей ближе не к бухгалтерской системе, а к автоматизированной системе управления, например, конвейером на предприятии. По крайней мере, задачи схожи. Надо создать определенные ресурсы в определенных местах, постоянно регулировать детали, скорость конвейера. В торговле нужно поддерживать ассортимент на полках, регулировать цены, спрос. Использовать бухгалтерскую систему для управления конвейером никому в голову не приходит, а вот для управления магазином таких попыток много.

Привязка отечественных систем к бухгалтерии идет в ущерб ее функциональности, т.е. сильно усложняет ее, ограничивает быстродействие.

Второе отличие западных программ – четкое разделение: либо система комплексная, либо специализированная, либо для оптовой, либо для розничной торговли.

Аналитическая компонента системы управления и поддержка решений в маркетинге.

В последнее время все большее развитие получают маркетинговые информационные системы, либо содержащие интеллектуальную компоненту в виде базы маркетинговых знаний и механизма вывода решений и рекомендаций в аналитической и модельной подсистемах, либо интеллектуальные СПР в маркетинге и ЭС. Вариант структуры и основные блоки интеллектуальной системы управления маркетингом для центрального офиса крупной торговой фирмы, имеющей розничную сеть супермаркетов, представлен на рис.12.5.

Данная система предназначена для обработки больших массивов данных, решения задач планирования, а также выдачи советов и рекомендаций при управлении маркетинговой деятельностью фирмы.

Основные задачи, решаемые в системе, это разработка плана маркетинга и другие расчетные функции (ценообразование, планируемые продажи, ожидаемая прибыль и др.), обработка больших объемов статистических, аналитических, социологических данных, данных о текущей деятельности филиалов и др. Кроме того, интеллектуальная система осуществляет эвристический анализ обрабатываемой информации и представляет ЛПР советы и рекомендации по тактическим действиям в определенных рыночных ситуациях и условиях, а также рекомендации по выработке стратегии развития фирмы, разработке стратегического планирования и программы маркетинга. Важной функцией, реализуемой системой, является прогнозирование продаж и прогнозирование для оценки возможного состояния фирмы при реализации того или иного решения.

* Чтобы не перегружать рисунок, представлены только основные информационные и функциональные связи.

Рис.12.5. Основные компоненты интеллектуальной системы управления маркетингом.

Принимая во внимание уровень неопределенности рыночной среды функционирования торговой фирмы с розничной сетью, для решения некоторых из перечисленных задач целесообразно использование интеллектуальных технологий. В частности, для выработки рекомендации это нечеткая продукционная или семантическая база знаний с механизмом логического вывода; для решения задач прогнозирования возможно использование, помимо динамических имитационных моделей, нечетких сетевых моделей имитации либо нейронных сетей.

Выбор модели представления знаний и разработки стратегии поиска решений во многом определяется конкретной сферой деятельности фирмы, решаемыми задачами, характеристиками среды и т.д.

Для повышения эффективности систем управления маркетингом все больше используют интеллектуальный анализ данных и CRM – технологии.

12.3. CRM – технологии и интеллектуальный анализ данных в управлении маркетингом.

В теории маркетинга принято рассматривать четыре основные концепции рыночной ориентации компании.

Первые две из них - производственно-ориентированная и продукто-ориентированная концепции - так или иначе утверждают, что компания будет иметь успех, если ее товар обладает наивысшим качеством и наименьшей ценной. Т.е. эти концепции направлены на улучшение производственного процесса.

Две другие концепции - ориентированность на продажи и концепция марке­тинга - сводятся к тому, что фирма должна вести агрессивную политику продаж, по­стоянно изучать нужды и потребности целевых рынков и удовлетворять их на более высоком уровне, чем конкуренты.

Последние концепции на современном этапе развития бизнеса пользуются наибольшей популярностью. Наиболее прогрессивной тенденцией на данный мо­мент является кастомизация - маркетинговая политика, при которой Фирма как бы пытается определить нужды каждого клиента, его индивидуальные предпочтения и предложить ему уникальный продукт. Такая ситуация вполне закономерна: многи­ми компаниями пределы качества и минимизации издержек уже достигнуты, и кли­енты больше обращают внимание на моменты, сопровождающие покупку и обслу­живание.

Однако ориентация фирмы, как правило, на одну из четырех концепций не приводит к успеху. В идеальном случае компания должна учитывать все концепции маркетинга, перечисленные выше, что практически не возможно без применения со­временных информационных технологий.

В последнее время для оптимизации и автоматизации внутренней деятельно­сти фирмы применяются ERP системы (Enterprise Resources Planning - планирование ресурсов предприятия), направленные на усовершенствование таких процессов, как планирование, изготовление, учет и контроль. При разработке и внедрении ERP-систем в компании клиент рассматривается как "элемент внешнего мира" и определяющего влияния не оказывает. Другими словами, ERP-системы направлены на достижение конкурентных преимуществ за счет оптимизации внутрен­них бизнес-процессов.

В этом отношении противоположными являются CRM системы (Customer Relationships Management - управление отношениями с клиентами), в центре внима­ния которых находится клиент компании. CRM-системы позволяют "интегриро­вать" клиента в сферу организации - фирма получает максимально возможную ин­формацию о своих клиентах и их потребностях и, исходя из этих данных, строит свою организационную стратегию, которая касается всех аспектов ее деятельности: производства, рекламы, продаж, дизайна, обслуживания и пр.

Database marketing.

Развитие информационных технологий породило отдельное направление в маркетинговой деятельности - Database marketing. Понятие Database marketing не­разрывно связано с концепцией кастомизации и применением CRM-систем.

Database marketing (маркетинговая деятельность на основе анализа баз данных) - технология обработки существующей базы данных предприятия и использования этой информации в разработке маркетинговой стратегии.

Данная концепция была предложена в 80-х годах, и с тех пор уже приносит доход своим последователям. Однако подлинные выгоды от применения Database marketing открываются только теперь, с началом перехода от простого накопления данных и анализа эксперта к интеллектуальному машинному анализу.

Database marketing может быть рассмотрен как последовательность шагов, которые охватывают цельный технологический цикл. Вот основные этапы этого процесса (процесс начинается с анализа информации об уже существующих клиен­тах):

  1. Идентификация клиента

  2. Решение, какая информация о клиентах необходима и доступна к получению.

  3. Поиск доступных источников такой информации.

  4. Сохранение всей необходимой информации в базе данных.

  5. Формулировка вопроса, на который необходимо получить ответ.

  6. Анализ сохраненных данных: построение модели.

  7. Выбор стратегии маркетинга, которая основана на этой модели.

  8. Непосредственное взаимодействие с отобранными клиентами (реализация стратегии).

  9. Анализ результатов.

Повторение этапов 1-9 (для решения следующих вопросов или оптимизации

достигнутых результатов).

Применение тех же этапов для работы с потенциальными клиентами.

Этапы 5-7 и 9, которые непосредственно участвуют в анализе данных, обычно наиболее сложны. Очень часто именно они и становятся камнем преткновения для целого процесса. В то же время с точки зрения получения значимых результатов эти шаги чрезвычайно важны.

Зачастую даже простейший анализ данных может значительно усовершенст­вовать маркетинговую стратегию. Так разбиение клиентов по возрастным категори­ям и рассылка каждой из них различных рекламных проспектов - тоже шаг к повы­шению эффективности маркетинговой деятельности. Однако реальные плоды от применения Database Marketing можно пожинать только когда станет возможным отвечать на гораздо более сложные вопросы. Например:

Как связана покупательская способность клиента с теми его характеристика­ми, которые нам доступны?

Кто из клиентов нуждается в дополнительном получении рекламных проспектов по почте?

Кто из потенциальных клиентов станет реальным?

На какие характеристики клиента не стоит обращать внимания в будущем?

Каков будет уровень продаж в следующем месяце?

Знание правильных ответов на эти и многие другие вопросы оборачиваются огромной экономией денег и возможностью получения дополнительной прибыли. Однако, для ответа на эти вопросы требуется куда более сложный анализ данных, чем позволяют возможности даже самого опытного эксперта.

Проблема заключается в необходимости учета огромного количества характеристик одновременно, построении множества гипотез о связях в данных, тестиро­вания их на реальных данных и сохранении всех отобранных гипотез, пока не обнаружится одна, наиболее полно объясняющая данные. Очевидно, что со столь сложной многофакторной задачей, человеческий мозг справиться практически не способен, вот почему применяемые в Database Marketing CRM-системы на сегодняшний день сложно представить без использования технологий интеллектуального анализа - Data Mining ("Добыча данных" или Интеллектуальный анализ данных - ИАД).

Конечной целью применения Data Mining в Database Marketing является фор­мирование маркетинговой стратегии предприятия с минимальным участием самого эксперта. По сути его функции сводятся к определению желаемой цели и последую­щему контролю машинного анализа.

Процесс применения Data Mining менеджером Database Marketing в общих чертах состоит из следующих этапов:

  1. Формулирование вопроса, на который необходимо получить ответ.

  2. Построение модели, которая определяет, как от независимых переменных за­висит выбранная целевая переменная

  3. Статистическое тестирование этой модели на известных данных

  4. Повторение шагов 2-3 пока не достигается желаемая точность предсказания.

  5. Построение маркетинговой стратегии, основанной на полученной модели.

Системы CRM.

В CRM-системах, непосредственно реализо­ваны концепции интеллектуального анализа, применяемые в данной области.

CRM -система - система анализа различных данных, относящихся как к само­му клиенту, так и к деятельности фирмы. Система осуществляет поиск закономерностей в этих данных для выработки наиболее эффективной стратегии маркетинга, продаж, обслуживания клиентов и т. д. Для решения этих задач системе требуется:

  • хорошая интеграция подсистем,

  • большой объем наработанных статистических данных,

  • эффективный аналитический инструментарий,

  • интеграция с другими системами, автоматизирующими деятельность пред­приятия.

Технология CRM.

Основная часть современных систем CRM базируется на принципе "Клиент-Сервер", то есть все данные CRM-системы хранятся и обрабатываются в одной цен­трализованной Базе Данных, а клиенты имеют к ним доступ через удаленные терми­налы. Клиентами таких CRM-систем могут быть как внешние, так и внутренние по отношению к компании пользователи.

Взаимодействие между Клиентом и Сервером может осуществляться на осно­ве Intranet/Internet.

Часть "Сервер" обычно состоит из двух приложений:

  • СУБД для хранения, обработки данных;

  • системы OLAP (On-line Analytical Processing - аналитическая обработка дан­ных в реальном масштабе времени) и Data Mining для анализа.

Чаще всего компании используют в качестве СУБД продукты от известных производителей, такие как Oracle, Interbase, Microsoft SQL Server. Индивидуальным решением каждого разработчика CRM-систем обычно является построение OLAP-и Data Mining-приложений.

eCRM - системы для электронной коммерции.

Очень популярным на сегодняшний момент направлением CRM-сиcтем являются CRM-системы для электронной коммерции (eCRM), Однако прежде необходи­мо определиться с терминологией.

Т.к. все современные системы CRM, независимо от того, в какой сфере бизне­са они задействованы, так или иначе используют Интернет-технологии (например, для получения необходимой информации о клиенте) то, очень часто разработчики CRM-систем прибавляют к названию своих продуктов букву "е", но эти V-CRM-системы никакого отношения к электронному бизнесу не имеют.

Настоящие eCRM-системы обладают всеми функциями обычных CRM-систем, плюс они полностью интегрируются с web-сайтом компании - вся информа­ция с сайта попадает в систему eCRM. Причем сама система может определять по­строение сайта и эффективно обслуживать каждого клиента в процессе интернет-покупки или оказания интернет-услуги.

eCRM-система может быть интегрирована отдельным модулем в основную систему CRM, если компания, помимо своей основной деятельности, ведет свой бизнес в Интернет,

Наиболее популярным видом CRM-систем в электронной коммерции явля­ются системы eCRM для интернет-магазинов (на этом рынке присутствует огромное количество разработчиков eCRM-систем).

Рынок CRM.

В настоящее время мировой рынок ERP-систем так или иначе стабилизировался, а рынок систем CRM еще только развивается,

В настоящее время в России практически нет разработчиков полноценных CRM-систем. Большая часть CRM-систем, являются решениями западных компа­ний, оптимизированными разработчиками или их российскими партнерами для со­ответствия российским стандартам.

Необходимо отметить, что CRM-системы требуют значительно меньшей до­работки, чем ERP-приложения, в которых нужно учитывать законодательство по бухгалтерскому, финансовому и хозяйственному учету. CRM-системы относительно легко локализировать в любой стране - основную часть оптимизации составляет пе­ревод.

Дополнительной эффективности организация может добиться и от интегра­ции обеих систем. Иногда уже сами разработчики предлагают ERP-системы с эле­ментами систем CRM.

Интеллектуальный анализ данных в управлении маркетингом.

Интеллектуальный анализ данных (ИАД), или Data Mining (“Добыча данных”) – это процесс поддержки решений, основанный на поиске в данных скрытых закономерностей. При этом накопленные средства автоматически обобщаются до информации, которая может быть охарактеризована как знания.

В общем случае ИАД состоит из трех стадий:

  1. выявление закономерностей (свободный поиск);

  2. использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);

  3. анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Все методы ИАД подразделяются на две группы по принципу работы с исходными обучающими данными.

В первом случае исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогностического моделирования и/или анализа исключений; это так называемые методы рассуждений на основе анализа прецедентов. Главной проблемой этой группы методов является затрудненность их использования на больших объемах данных, хотя именно при анализе больших хранилищ данных методы ИАД приносят наибольшую пользу.

Во втором случае информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции. Согласно предыдущей классификации, этот этап выполняется на стадии свободного поиска, которая у методов первой группы в принципе отсутствует. Таким образом, для прогностического моделирования и анализа исключений используется результаты этой стадии, которые гораздо более компактны, чем сами массивы исходных данных.

К первой группе можно отнести рассуждения на основе анализа прецедентов; ко второй группе относятся методы кросс табуляции и байесовские сети, методы логической индукции, включая деревья решений и индукцию правил, статистические методы, эволюционное моделирование (генетические алгоритмы, искусственные нейронные сети).

Выделяют пять стандартных типов закономерностей, которые позволяют выявить методы ИАД:

  • ассоциация;

  • последовательность;

  • классификация;

  • кластеризация;

  • прогнозирование.

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Если существует цепочка связанных во времени событий, то говорят о последовательности. С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования набора правил.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства ИАД самостоятельно выделяют различные однородные группы данных.

Основой для систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается найти шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что поведение системы в будущем.

Приведем некоторые актуальные применения АИД в сфере маркетинга.

Маркетинговые исследования:

  • Определение характеристик типичных покупателей продукции фирмы для выявления новых потенциальных клиентов (профилирование клиентов).

  • Выявление основных сегментов рынка и наиболее благоприятных подмножеств, а также исследование зависимостей между основными показателями и характеристиками сегментов.

Розничная торговля:

  • Анализ покупательской корзины (анализ сходства) предназначен для выявления товаров, которые покупатели стремятся приобретать вместе. Знание покупательской корзины необходимо для улучшения рекламы, выработки стратегии создания запасов товаров и способов их раскладки в торговых залах.

  • Исследование временных шаблонов помогает торговым предприятием принимать решения о создании товарных запасов.

  • Создание прогнозирующих моделей дает возможность торговым предприятиям узнавать характер потребностей различных категорий клиентов с определенным поведением, например, покупающих товары известных дизайнеров или посещающих распродажи. Эти знания нужны для разработки точно направленных, экономичных мероприятий по продвижению товаров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]