- •1.Определения биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.
- •5. Клеточная теория. Значение теории в обосновании диалетико-материалистической концепции единства жизни.
- •6. Клетка как открытая система. Организация потоков вещества, энергии в клетке.
- •7. Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.
- •8.Ассимиляция в гетеротрофной клетке. Её фазы.Сущность
- •9. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.
- •11.Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).
- •12. Клеточный цикл. Его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •13. Физиологическая и репаративная регенерация. Биологическое и медицинское значениепроблем регенерации.
- •14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •15. Строение днк. Модель днк Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.
- •17 Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.
- •18.Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер.
- •20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
- •21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •22.Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- •23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов,промотора,оператора,регулятора,факторов транскрипции(индукторов)
- •24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.
- •25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (hla). Его значение в трансплантологии.
- •28.Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •30. Гаметогенез и мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия мейоза и митоза.
- •31.Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- •36. Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •37.Онтогенез и его периодизация. Прямое и непрямое развитие.
- •2.Зрелость
- •3.Старость
- •38.Общие закономерности онтогенеза многоклеточных. Реализация наследственной информации в становлении фенотипа.
- •39. Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
- •41.Постнатальный онтогенез и его периоды. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.
- •42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод. Коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- •43.Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия.
- •44. Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя всинхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •45. Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •46.Биоритмы и возраст. Хронобиологическая трактовка тезиса “Старость и болезнь-это стесненная в своей свободе жизнь ”
- •48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.
- •49.Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод. Коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
Роль наследственности и среды в онтогенезе.
Онтогенез протекает в конкретных условиях окружающей среды, и на любом его этапе организм наитеснейшим образом взаимосвязан со средой. Развитие каждого конкретного организма - это, по сути, формирование фенотипа, или реализация генотипа в конкретных условиях среды. Фенотип организма не только обусловлен генотипом, обеспечивающим материальную преемственность между поколениями, но и зависит от факторов внешней среды, в которой формируется и существует данный организм.
В течение всего онтогенеза происходит взаимодействие между генотипом и факторами среды, которые в конечном счёте и детерминируют все биологические признаки данного организма. При этом обе эти группы факторов имеют одинаково важное значение, хотя для отдельных признаков доминирующей может выступать одна из двух групп факторов. Так, группы крови (фенотипический признак) имеют у человека исключительно генетическую природу: при любых условиях среды данный генотип проявляется одинаково и обусловливает строго определённую группу крови. С другой стороны, существуют признаки, обусловленные исключительно факторами среды. Например, количество эритроцитов в циркулирующей крови у людей с разнообразными генотипами прямо зависит от высоты местности проживания над уровнем моря: с увеличением высоты их число у всех возрастает. Тем не менее сама способность к изменению числа эритроцитов в зависимости от парциального давления кислорода в атмосферном воздухе обусловлена генетически. Однако подобные крайние случаи очень редки. В большинстве случаев различия особей определяются факторами обеих групп - наследственными и средовыми. Так, различия в росте обусловлены как генетически, так и конкретными средовыми факторами (климат, характер питания и т.п.).
Часто характер изменений развивающегося организма, вызываемых либо наследственными, либо средовыми факторами, бывает сходным. Например, у женщин, перенесших краснуху на ранних сроках беременности, часто рождаются глухонемые дети или дети с врождённой катарактой, причём эти аномалии не отличимы от соответствующих аномалий, обусловленных генетически. Изменения фенотипа, сходные с изменениями генетической природы, но обусловленные только факторами внешней среды, получили название фенокопий.
Близнецовый метод был введен Ф. Гальтоном. Он разделил близнецов на однояйцовых (монозиготных) и двуяйцовые (дизиготных).Если изучаемый признак проявляется у обоих близнецов пары, то их называют конкордантными, отсутствие дискордантность. Близнецовый метод используется в генетике для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака.
Коэффициент наследственности.
Для оценки того или иного признака проводят расчет по формуле
Где H – коэффициент наследственности, МЗ – однояйцевые близнецы, ДЗ – двуяйцевые близнецы.
При H, равном единице, признак полностью определяется наследственным компонентом, приH, равном нулю, определяющую роль играют факторы среды. 0,5 – одинаково.
На основании близнецового метода была установлена генетическая предрасположенность к различным болезням. Этим же методом показано, что и продолжительность жизни а определенной мере определяется наследственностью. Критические периоды развития
Критические периоды развития – это такие периоды, когда зародыш наиболее чувствителен к повреждению разнообразными факторами, которые могут нарушить нормальное развитие, это периоды наименьшей резистентности зародышей к факторам внешней среды. В критические периоды у зародышей сильно изменяется метаболизм, резко усиливается дыхание, меняется содержание РНК, иммунологически выявляются новые, ранее отсутствующие белки. Одновременно падает темп роста. В этой ситуации факторами, способствующими нормализации процесса могут оказаться кислород и нуклеиновые кислоты. Различают критические периоды для отдельных органов, и общие для всего организма. Всестороннее изучение критических периодов показывает, что они совпадают с активной морфологической дифференцировкой, с переходом от одного периода развития к другому, с изменением условий существования зародыша.
В отношении развития человека П, Г, Светлов подчеркивает большое значение следующих критических периодов:
Имплантации (6-7 сутки после зачатия)
Плацентация (конец 2-й недели беременности)
Перинатальный (роды)
С критическим периодом в организме новорожденного связаны резкое изменение условий существования и перестройка деятельности всех систем организма (изменяется характер кровообращения, газообмена, питания и др.).
Тератогенные факторы среды.
Факторы среды, способные вызывать нарушения развития, уродства. В разные периоды развития эмбрион оказывается чувствительным к тем или другим физическим факторам или химическим веществам, попадающим в организм матери.
Так, прием внутрь хитина, алкоголя, отравление токсическими веществами, недостаток кислорода могут вызывать нарушение развития органов и, в первую очередь нервной системы плода.
Недостаток витамина группы B может стать причиной морфологический отклонений в сердце и печени.
Дозы гидроксимочевины могут быть причиной функциональных расстройств нервной системы.
Причиной ряда уродств являются токсины паразитов.
Применение средства талидомид – отсутствие или недоразвитие конечностей, нарушение в строении скелета, лица и других органов.
Следует также отметить, что мощным повреждающим тератогенным фактором являются рентгеновские лучи и другие ионизирующие излучения.
